Reg. No

M. Sc. DEGREE END SEMESTER EXAMINATION : MARCH 2023

SEMESTER 2 : MATHEMATICS

COURSE : 21P2MATT10: MEASURE THEORY AND INTEGRATION

(For Regular - 2022 Admission and Supplementary - 2021 Admission)

Duration : Three Hours

	PART A	
	Answer any 8 questions	Weight: 1
1.	If ϕ is a non -negative simple function and $A \supset B$, then prove that $\int_A \phi \geq \int_B \phi.$	(A, CO 3)
2.	If $m^*A=0$, then prove that $m^*(A\cup B)=m^*B$ for any set $B.$	(A, CO 2)
3.	Define Borel sets. Is an open set a Borel set? Justify.	(R, CO 1)
4.	Define the characteristic function of a set $A.$ If A and B are two sets, prove that	(A, CO 2)
	$\chi_{A\cup B}=\chi_A+\chi_B-\chi_A\chi_B.$	
5.	Define a measure space. Give an example.	(U, CO 4)
6.	If $V\subset X imes Y$, then prove that $(\chi_{_V})_x=\chi_{_{V_x}}$ and $(\chi_{_V})^y=\chi_{_{V^y}}.$	(A, CO 5)
7.	If f is a non-negative measurable function and ${}^{\prime}a{}^{\prime}$ is a positive constant	
	such that $f\geq a$ on a measurable set E , prove that $\int_E f\geq am E.$	(A, CO 3)
8.	If μ_1 and μ_2 are two measure on a measurable space (X,B) and a and b are two positive constants, then prove that $a\mu_1+b\mu_2$ is also a measure.	()
9.	If f is integrable, then prove that f is finite valued a.e.	(A, CO 3)
10.	Let `c' be a constant and f be a measurable function defined on X , where (X, \mathcal{B}) is a measurable space.	(U, CO 3)
	Then prove that cf and $f+c$ are measurable.	(1 x 8 = 8)
	PART B	ι <i>γ</i>
	Answer any 6 questions	Weights: 2
11.	Assume that $\langle E_i angle$ is a sequence of disjoint measurable sets and $E=\cup E_i.$ Then for any set A , prove that	0
	$\mu^*(A\cap E)=\sum \mu^*(A\cap E_i).$	()
12.	Prove that a measurable function f is integrable over a measurable set E if and only if both f^+ and f^- are integrable over $E.$	(A, CO 3)

13. (a) Show that every non-empty open set has a positive measure. (b) If $\{A_n\}$ is a countable collection of sets of real numbers, then prove that $m^*(UA_n) \leq \sum m^*A_n$. (A, CO 2)

14. By integrating $e^{-y} \sin 2xy$ w.r.t x and y, show that $\int_0^\infty e^{-y} \frac{\sin^2 y}{y} dy = \frac{\log 5}{4}.$ (A, CO 5)

23P2055

Max. Weights: 30

Name

15.	Let ϕ and ψ be simple functions which vanish outside a set of finite	
	measure,then prove that	(A, CO 3)
	$\int (a\phi+b\psi)=a\int \phi+b\int \psi$ where a and b are constants.	
	Hence, prove that	
	$\int (\phi - \psi) = \int \phi - \int \psi.$	
16.	Prove that m^* is translation invariant.	(A)
17.	Show that if f is ${\cal S}$ measurable and g is ${\cal J}$ measurable then fg is ${\cal S}$ x ${\cal J}$	(A, CO 1, CO 2,
	measurable.	CO 5)
18.	Let ${\mathfrak a}$ be an algebra of subsets of a space $X.$ If $A\in {\mathfrak a}$ and if $\langle A_i angle$ is any	
	sequence of sets in ${{lpha}}$ such that $A\subset \bigcup^\infty A_i$, then prove that	
	•	()
	$\mu A \leq \sum\limits_{i=1}^{i=1} \mu A_i.$	
	$i{=}1$	$(2 \times 6 - 12)$
		(2 x 6 = 12)
	PART C	

	Answer any 2 questions	Weights: 5
19.	If $E\in \mathcal{S} imes \mathcal{J}$, then prove that for each $x\in X$ and $y\in Y$, $E_x\in \mathcal{J}$ and $E^y\in S.$	(A, CO 4)
20.	Prove that the outermeasure of an interval is its length.	(A, CO 1)
21.	State and prove any two convergence theorems.	(A)
22.	Let E be a measurable set such that $0 < u E < \infty.$ Then prove that there is a positive set $A \subset E$ with $ u A > 0.$	(A)
		(5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.
CO 1	define measurable set, measurable function , Lebesgue integral and to relate Lebesgue integral with Riemann integral.	А	3, 17, 20	8
CO 2	explain the relevance of Lebesgue integration	Α	2, 4, 13, 17	6
CO 3	solve problems related to Lebegue integral , Lebesgue and abstract measure, Lebesgue and abstract outer measure , signed measure ,Integral with respect to a measure , Integral with respect to product measure .	A	1, 7, 9, 10, 12, 15	8
CO 4	analyse the algebraic properties of Lebesgue integrable functions and Lebesgue measurable functions.	An	5, 19	6
CO 5	develop an algebraic as well as a geometrical structure for the collection of all integrable functions.	Cr	6, 14, 17	5

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;