Reg. No

M. Sc. DEGREE END SEMESTER EXAMINATION : MARCH 2023

SEMESTER 2 : MATHEMATICS

COURSE : 21P2MATT09 : NUMBER THEORY

(For Regular - 2022 Admission and Supplementary - 2021 Admission)

Duration : Three Hours

PART A					
	Answer any 8 questions	Weight: 1			
1.	Prove that $arphi$ is multiplicative.	(A, CO 1)			
2.	Prove that Dirichlet inverse of μ is $u.$	(A, CO 1)			
3.	Prove or disprove: Every non-zero arithmetical function has Dirichlet inverse.	(A, CO 1)			
4.	Prove that Congruence is an equivalence relation.	(A, CO 2)			
5.	Solve the congruence $5x\equiv 3(\mod 24).$	(U, CO 2)			
6.	Prove that $\hat{a}=\hat{b}$ if and only if, $a\equiv b(\mod m).$	(U, CO 2)			
7.	Let D be a domain and x and y non-zero elements of D . Prove that x is a unit if and only if $\langle x angle = D.$	(A, CO 4)			
8.	Prove that the ring of integers $\mathfrak O$ in a number field K is noetherian.	(U, CO 4)			
9.	Prove that $\mathbb{R}[x,y]/\langle x angle$ is isomorphic(as rings) to $\mathbb{R}[y].$	(A, CO 4)			
10.	If $\mathfrak{a} eq 0$ is an ideal of \mathfrak{O} with $ \mathrm{N}(\mathfrak{a})$ is prime , prove that $\mathfrak{a} \mathrm{N}(\mathfrak{a})$	(A, CO 5) (1 x 8 = 8)			

PART B Answer any 6 questions

11.	Find all integers n such that $arphi(n)=2n$	(A, CO 1)
12.	Derive formula for the divisor sum of Euler totient function.	(A, CO 1)
13.	Prove that for $n \geq 1$, $rac{1}{6}n\log n < p_n < 12\left(n\log n + n\logigg(rac{12}{e}igg) ight)$ where p_n is the n^{th} prime.	(A, CO 2)
14.	Prove that for $x\geq 2$, $\pi(x)=rac{artheta(x)}{\log x}+\int\limits_{2}^{x}rac{artheta(t)}{t\log^{2}t}dt.$	(A, CO 2)
15.	Prove that every Euclidean domain is a unique factorization domain.	(An, CO 3)
16.	If a domain D is Noetherian, prove that factorization into irreducible is possible in $D.$	(A, CO 3)
17.	Let R be a CRU and $\mathfrak a$ be an ideal of R . Prove that $\mathfrak a$ is prime iff $R/\mathfrak a$ is an integral domain.	(U, CO 4)
18.	If $\mathfrak p$ is a maximal ideal of $\mathfrak O$, prove that $\mathfrak p\mathfrak p^{-1}=\mathfrak O.$	(A, CO 5) (2 x 6 = 12)

,

Max. Weights: 30

Weights: 2

23P2043

Name

PART C Answer any 2 questions Weights: 5						
19.	Show that the set of multiplicative functions is a subgroup of the group of all arithmetical functions f with $f(1) eq 0$.			(A, CO 1)		
20.	Prove that the following statements are equivalent					
	$egin{aligned} &1. \lim_{x o\infty} rac{\pi(x)\log x}{x} = 1. \ &2. \lim_{x o\infty} rac{artheta(x)}{x} = 1. \ &3. \lim_{x o\infty} rac{\psi(x)}{x} = 1. \end{aligned}$			(A, CO 2)		
21.	Prove that $\mathfrak O$ of $\mathbb Q\left(\sqrt{d} ight)$ is not a unique factoriz $d=10,15,26,30$	domain where	(A, CO 3)			
22.	Prove that $\mathrm{N}(\mathfrak{a}\mathfrak{b})=\mathrm{N}(\mathfrak{a})\mathrm{N}(\mathfrak{b})$, for any ideals $\mathfrak{a},\mathfrak{b}$ of $\mathfrak{O}.$			(An, CO 5) (5 x 2 = 10)		
OBE: Questions to Course Outcome Mapping						
со	Course Outcome Description	CL	Questions	Total Wt.		
CO 1		U	1, 2, 3, 11, 12, 19	12		
CO 2		Α	4, 5, 6, 13, 14, 20	12		

15, 16, 21

9

5 8

А

CO 5 An 10, 18, 22			7, 8, 9, 17
	CO 5	An	10, 18, 22

CO 3

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;