Reg. No \qquad Name
23P2043

M. Sc. DEGREE END SEMESTER EXAMINATION : MARCH 2023
 SEMESTER 2 : MATHEMATICS
 COURSE : 21P2MATTO9 : NUMBER THEORY
 (For Regular - 2022 Admission and Supplementary - 2021 Admission)

Duration : Three Hours
Max. Weights: 30

PART A

Answer any 8 questions

Weight: 1

1. Prove that φ is multiplicative.
($\mathrm{A}, \mathrm{CO} 1$)
2. Prove that Dirichlet inverse of μ is u.
3. Prove or disprove: Every non-zero arithmetical function has Dirichlet inverse.
4. Prove that Congruence is an equivalence relation.
($\mathrm{A}, \mathrm{CO} 1$)
5. Solve the congruence $5 x \equiv 3(\bmod 24)$.
($\mathrm{A}, \mathrm{CO}_{2}$)
6. Prove that $\hat{a}=\hat{b}$ if and only if, $a \equiv b(\bmod m)$.
7. Let D be a domain and x and y non-zero elements of D. Prove that x is a unit if and only if $\langle x\rangle=D$.
8. Prove that the ring of integers \mathfrak{O} in a number field K is noetherian.
9. Prove that $\mathbb{R}[x, y] /\langle x\rangle$ is isomorphic(as rings) to $\mathbb{R}[y]$.
(A, CO 4)
10. If $\mathfrak{a} \neq 0$ is an ideal of \mathfrak{O} with $N(\mathfrak{a})$ is prime, prove that $\mathfrak{a} \mid N(\mathfrak{a})$
($\mathrm{A}, \mathrm{CO} 5$) ($1 \times 8=8$)

PART B

Answer any 6 questions
11. Find all integers n such that $\varphi(n)=2 n$

Weights: 2
($\mathrm{A}, \mathrm{CO} 1$)
12. Derive formula for the divisor sum of Euler totient function.
($\mathrm{A}, \mathrm{CO} 1$)
13. Prove that for $n \geq 1, \frac{1}{6} n \log n<p_{n}<12\left(n \log n+n \log \left(\frac{12}{e}\right)\right)$ where p_{n} is the $n^{\text {th }}$ prime.
14.

Prove that for $x \geq 2, \pi(x)=\frac{\vartheta(x)}{\log x}+\int_{2}^{x} \frac{\vartheta(t)}{t \log ^{2} t} d t$.
($\mathrm{A}, \mathrm{CO}_{2}$)
14.
5. Prove that every Euclidean domain is a unique factorization domain.
(An, CO_{3})
16. If a domain D is Noetherian, prove that factorization into irreducible is possible in D.
17. Let R be a CRU and \mathfrak{a} be an ideal of R. Prove that \mathfrak{a} is prime iff R / \mathfrak{a} is an integral domain.
18. If \mathfrak{p} is a maximal ideal of \mathfrak{O}, prove that $\mathfrak{p p}^{-1}=\mathfrak{O}$.

PART C

Answer any 2 questions
Weights: 5
19. Show that the set of multiplicative functions is a subgroup of the group of all arithmetical functions f with $f(1) \neq 0$.
20. Prove that the following statements are equivalent

1. $\lim _{x \rightarrow \infty} \frac{\pi(x) \log x}{x}=1$.
2. $\lim _{x \rightarrow \infty} \frac{\vartheta(x)}{x}=1$.
(A, CO 2)
3. $\lim _{x \rightarrow \infty} \frac{\psi(x)}{x}=1$.
4. Prove that \mathfrak{O} of $\mathbb{Q}(\sqrt{d})$ is not a unique factorization domain where $d=10,15,26,30$
(A, CO_{3})
5. Prove that $N(\mathfrak{a b})=N(\mathfrak{a}) N(\mathfrak{b})$, for any ideals $\mathfrak{a}, \mathfrak{b}$ of \mathfrak{O}.
(An, CO 5) ($5 \times 2=10$)

OBE: Questions to Course Outcome Mapping

CO Course Outcome Description	CL	Questions	Total Wt.	
CO_{1}		U	$1,2,3,11,12,19$	12
CO_{2}	A	$4,5,6,13,14,20$	12	
CO_{3}	A	$15,16,21$	9	
CO_{4}	An $7,8,9,17$	5		
CO_{5}	An $10,18,22$	8		

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;

