Reg. No $\qquad$ Name $23 P 2032$

# M. Sc. DEGREE END SEMESTER EXAMINATION : MARCH 2023 <br> SEMESTER 2 : PHYSICS <br> COURSE : 21P2PHYT07: CONDENSED MATTER PHYSICS <br> (For Regular - 2022 Admission and Supplementary - 2021 Admission) 

Duration : Three Hours

Max. Weights: 30

PART A

## Answer any 8 questions

## Weight: 1

5. List any two drawbacks of Drude-Lorentz model?
6. What is meant by Optical mode of wave propagation in linear diatomic crystal
7. What are the different branches of the phonon dispersion curves of a linear diatomic lattice? Why are they called so?
8. Write down the expression for Curie-Weiss law in ferromagnetism and explain its temperature dependance?
9. Obtain the relation between magnetic induction, magnetization and magnetizing field?

PART B
Answer any 6 questions
Weights: 2 and $Z$ axes. Find the Miller indices of the plane?
13. The lattice constant of a cubic crystal is $6.23 \mathrm{~A}^{\mathrm{O}}$. What is the interplanar spacing between the (111) planes?
14. Find the lowest energy of an electron confined to move in a three dimensional potential box of length $0.8 \mathrm{~A}^{0}$
15. Explain the construction of Brillouin zones by applying it to a 2-dimensional square lattice?
16. In a p-type semiconductor, the Fermi level lies 0.4 eV above the valence band. If the concentration of the acceptor atom is tripled, find the new (E) position of the Fermi level?
17. The intrinsic carrier density at room temperature in germanium is $2.37 \times 10^{19} / \mathrm{m}^{-3}$. If the electron and hole mobilities are 0.38 and 0.18 $\mathrm{m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$, respectively. Calculate the resistivity of the intrinsic germanium.
18. An iron rod 0.2 m long, 10 mm diameter and of relative permeability 1000 is placed inside a long solenoid wound with 300 turns $/ \mathrm{m}$. If a current of 0.5
A is passed through the coil, find the magnetic moment of the rod?

PART C

Answer any 2 questions

## Weights: 5

 density of states20. Obtain the vibrational spectrum of a linear diatomic lattice and show that the spectrum consists of two branches.
21. Discuss Debye model of lattice heat capacity. Derive an expression for it.
22. Give an account of Wiess theory of ferromagnetism and show from the plot of Langevin function spontaneous magnetization exists below the Curie temperature and vanishes above it?

OBE: Questions to Course Outcome Mapping

| CO | Course Outcome Description | CL | Questions | Total Wt. |
| :--- | :--- | :--- | :--- | :--- |

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;

