Reg. No

M. Sc. DEGREE END SEMESTER EXAMINATION : MARCH 2023

SEMESTER 2 : MATHEMATICS

COURSE : 21P2MATT08 : GRAPH THEORY

(For Regular - 2022 Admission and Supplementary - 2021 Admission)

Duration : Three Hours

	PART A	
	Answer any 8 questions	Weight: 1
1.	Let G be a 2-connected graph and u and v be vertices of G . Let P be a $u-v$ path in G.Is it necessarily true that there exists another $u-v$ path in G such that P and Q are internally disjoint? Justify your answer.	(An, CO 1)
2.	Give an example of a degree sequence that is realizable as the degree sequence by only a disconnected graph.	(Cr, CO 1)
3.	Define a graphical sequence.Show that the sequence $\left(7,6,3,3,2,1,1,1 ight)$ is not graphical.	(U, CO 1)
4.	Give an example of a tree with disjoint center and centroid.	(An, CO 2)
5.	Determine κ,λ and δ of $K_6.$	(E, CO 2)
6.	Prove or disprove: If closure of G is Hamiltonian, then G is Hamiltonian.	(A, CO 2)
7.	Define an Eulerian graph.Give examples of Eulerian and non-Eulerian graphs.	(U, CO 3)
8.	Give an example of a cubic graph with edge chromatic number 4.	(A, CO 3)
9.	Compute $\chi'(C_9).$	(A, CO 4)
10.	Determine $\chi'(K_9)$.	(A, CO 4) (1 x 8 = 8)

PART B Answer any 6 questions

Weights: 2

11.	Show that the sequence $6, 6, 5, 4, 3, 3, 1$ is not graphical.	(An, CO 1)
12.	Show that every tournament of order n has at most one vertex with $d^+(v)=n-1.$	(A, CO 1)
13.	Determine κ,λ and δ of $W_7.$	(E, CO 2)
14.	Prove that a vertex v of a tree T with at least three vertices is a cut vertex of T if and only if v is not a pendant vertex.	(A, CO 2)
15.	Prove that if G is Hamiltonian, prove that for every nonempty proper subset S of V , $\omega(G-S) \leq ~ S .$	(E, CO 3)
16.	Briefly describe the Konigsberg Bridge problem and its significance.	(R, CO 3)
17.	Show that a graph is 3-critical if and only if it is an odd cycle.	(An, CO 4)
18.	Show that a simple cubic graph with a cut edge is 4 edge chromatic.	(An, CO 4) (2 x 6 = 12)

23P2031

Max. Weights: 30

Name

	PART C Answer any 2 questions	Weights: 5
19.	Define automorphism of a simple graph G . Show that the set $\Gamma(G)$ of all automorphisms of a simple graph G is a group with respect to the compositions of mappings as the group operation. Further show that for any simple graph G , $\Gamma(G) = \Gamma(G^c)$	(A, CO 1)
20.	Show that every tree has a center consisting of either a single vertex or two adjacent vertices.	(U, CO 2)
21.	Show that a graph is Eulerian if and only if each edge e of G belongs to an odd number of cycles of G .	(An, CO 3)
22.	Show that every planar graph is 5 -vertex colorable.	(An, CO 4) (5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

со	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Explain basic concepts such as subgraphs, degrees of vertices, paths and connectedness, automorphisms of a simple graph, line graphs and basic concepts of tournaments.	E	1, 2, 3, 11, 12, 19	12
CO 2	Comprehend connectivity, vertex cuts , edge cuts, connectivity and edge connectivity, blocks, counting the number of spanning trees and Cayley's formula.	E	4, 5, 6, 13, 14, 20	12
CO 3	Analyse vertex and edge independent sets, Eulerian graphs, Hamiltonian graphs, vertex colorings and related results.	E	7, 8, 15, 16, 21	11
CO 4	Explain edge coloring and planarity, certain definitions and properties, dual of a plane graph, the four color theorem and the Heawood five color theorem.	E	9, 10, 17, 18, 22	11

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;