\qquad

M. Sc DEGREE END SEMESTER EXAMINATION : MARCH 2023
 SEMESTER 2 : MATHEMATICS
 COURSE : 21P2MATTO7: COMPLEX ANALYSIS
 (For Regular - 2022 Admission and Supplementary - 2021 Admission)

Duration : Three Hours
Max. Weights: 30

PART A

Answer any 8 questions

Weight: 1

1. Show that $\lim _{x \rightarrow \infty} n^{1 / n}=1$
2. Prove that $e^{-z}=\frac{1}{e^{z}}$
3. Prove that $\left|e^{z}\right|=\exp (\operatorname{Rez})$
4. Evaluate $\int_{\gamma} \frac{e^{i z}}{z^{2}} d z, \gamma(t)=e^{i t}, 0 \leq t \leq 2 \pi$
5. State the second and third version of Cauchy's theorem
6. Let γ be a rectifiable curve in \mathbb{C} and suppose that F_{n} and F are continuous functions on γ. If $F=u-\lim F_{n}$ on γ then prove that
(U, CO 2) $\int_{\gamma} F=\lim \int_{\gamma} F_{n}$
7. State and prove open mapping theorem.
8. Define removable singularity? Give an exammple of a function with a removable singularity and non removable singularity.
($\mathrm{U}, \mathrm{CO}_{3}$)
9. Define convex set and convex function with examples in a complex plane
10. State Hadamard's three circle theorem
($\mathrm{R}, \mathrm{CO} 4$)

PART B

Answer any 6 questions
Weights: 2
11. If G is open and connected and $f: G \rightarrow C$ is differentiable with $f^{\prime}(z)=0$ for all z in G, then f is constant.
12. Let G be either the whole plane \mathbb{C} or some open disk. If $u: G \rightarrow \mathbb{R}$ is a harmonic function then prove that u has a
(A, CO 1) harmonic conjugate.
13. State and prove Abel's theorem
($\mathrm{A}, \mathrm{CO} 2$)
14. Show that $\int_{0}^{2 \pi} \frac{e^{i s}}{e^{i s}-z} d x=2 \pi$
15. Let $f(z)=\frac{1}{z(z-1)(z-2)}$ give the Laurent series exapansion of $f(z)$ in a) $\operatorname{ann}(0,0,1) \quad$ b) $\operatorname{ann}(0,1,2) \quad$ c) $\operatorname{ann}(0,2, \infty)$
(A, CO_{3})
16. Obtain the Laurent's series expansion of $f(z)=\frac{z^{2}-1}{(z+2)(z+3)}$ in the region a) $|z| \leq 2$ b) $2 \leq|z| \leq 3 \quad$ c) $|z| \geq 3$
17. State and prove the third version of the Maximum modulus theorem
18. State and prove the first version of The Maximum Modulus theorem
19. If $T(z)=\frac{a z+b}{c z+d}$ show that $T\left(\mathbb{R}_{\infty}\right)=\mathbb{R}_{\infty}$ if and only if we can choose a, b, c, d to be real numbers
20. State and prove Leibniz's theorem
21. Show that $\int_{\infty}^{-\infty} \frac{x^{2}}{1+x^{4}} d x=\frac{\pi}{\sqrt{(2)}}$
22. Let $a \leq b$ and let G be the vertical strip $\{x+i y / a \leq x \leq b\}$. Suppose $f: \bar{G} \longrightarrow \mathscr{C}$ is continuous and f is anaytic in G. If we define $M ;[a, b] \longrightarrow \mathscr{R}$ by $M(x)=\sup \{|f(x+i y)| /-\infty \leq y \leq \infty\}$ and (An, CO 4) $|f(z)| \leq B$ for all z in G then prove that $\log M(x)$ is a convex function.

OBE: Questions to Course Outcome Mapping

CO	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Analyze Analytic functions and Mobius transformations	U	$1,2,3,11,12$, 19	12
CO 2	Explain power series representation of analytic functions, Cauchy's integral formula, Cauchy's theorem	U	$4,5,6,13$, 14,20	12
CO 3	Illustrate about different types of singularities, residues and Rouche's theorem	U	$7,8,15,16$, 21	11
CO 4	Explain Maximum Modulus theorem, maximum principle, Schwarz's lemma, convex functions and Hadmard's Three Circles Theorem.	U	$9,10,17,18$, 22	11

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;

