Reg. No

Name

23P2018

M. Sc DEGREE END SEMESTER EXAMINATION : MARCH 2023

SEMESTER 2 : MATHEMATICS

COURSE : 21P2MATT07: COMPLEX ANALYSIS

(For Regular - 2022 Admission and Supplementary - 2021 Admission)

Duration : Three Hours

Max. Weights: 30

	PART A	Woight: 1
	Answer any 8 questions $1/n = 1$	Weight: 1
1.	Show that $\lim_{x ightarrow\infty}n^{1/n}=1$	(U, CO 1)
2.	Prove that $e^{-z} = \frac{1}{e^z}$	(A, CO 1)
3.	Prove that $ e^z = exp(Rez)$	(A, CO 1)
4.	Evaluate $\int_{\gamma} rac{e^{iz}}{z^2} dz, \gamma(t) = e^{it}, 0 \leq t \leq 2\pi$	(A, CO 2)
5.	State the second and third version of Cauchy's theorem	(R, CO 2)
6.	Let γ be a rectifiable curve in $\mathbb C$ and suppose that F_n and F are continuous functions on γ . If $F=u-\lim F_n$ on γ then prove that $\int_\gamma F=\lim\int_\gamma F_n$	(U, CO 2)
7.	State and prove open mapping theorem.	(R, CO 3)
8.	Define removable singularity? Give an exammple of a function with a removable singularity and non removable singularity.	(U, CO 3)
9.	Define convex set and convex function with examples in a complex plane	(A, CO 4)
10.	State Hadamard's three circle theorem	(R, CO 4) (1 x 8 = 8)
	PART B	
	Answer any 6 questions	Weights: 2
11.	If G is open and connected and $f:G ightarrow C$ is differentiable with $f'(z)=0$ for all z in G , then f is constant.	(U, CO 1)
12.	Let G be either the whole plane $\mathbb C$ or some open disk. If $u:G o\mathbb R$ is a harmonic function then prove that u has a harmonic conjugate.	(A, CO 1)
13.	State and prove Abel's theorem	(A, CO 2)
14.	Show that $\int_{0}^{2\pi} rac{e^{is}}{e^{is}-z}dx=2\pi$	(A, CO 2)
15.	Let $f(z) = rac{1}{z(z-1)(z-2)}$ give the Laurent series exapansion of $f(z)$ in a) $ann(0,0,1)$ b) $ann(0,1,2)$ c) $ann(0,2,\infty)$	(A, CO 3)
16.	Obtain the Laurent's series expansion of $f(z)=rac{z^2-1}{(z+2)(z+3)}$ in the region a) $ z \leq 2$ b) $2\leq z \leq 3$ c) $ z \geq 3$	(A, CO 3)
17.	State and prove the third version of the Maximum modulus theorem	(R, CO 4)
18.	State and prove the first version of The Maximum Modulus theorem	(U, CO 4) (2 x 6 = 12)

	PART C Answer any 2 questions	Weights: 5
19.	If $T(z)=rac{az+b}{cz+d}$ show that $T(\mathbb{R}_\infty)=\mathbb{R}_\infty$ if and only if we can choose a,b,c,d to be real numbers	(An, CO 1)
20.	State and prove Leibniz's theorem	(R, CO 2)
21.	Show that $\int_{\infty}^{-\infty} rac{x^2}{1+x^4} dx = rac{\pi}{\sqrt(2)}$	(A, CO 3)
22.	Let $a \leq b$ and let G be the vertical strip $\{x + iy/a \leq x \leq b\}$. Suppose $f: \overline{G} \longrightarrow \mathscr{C}$ is continuous and f is anaytic in G . If we define $M; [a, b] \longrightarrow \mathscr{R}$ by $M(x) = sup\{ f(x + iy) / - \infty \leq y \leq \infty\}$ and $ f(z) \leq B$ for all z in G then prove that $logM(x)$ is a convex function.	(An, CO 4)
		$(\Gamma_{12}, 2 - 10)$

(5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Analyze Analytic functions and Mobius transformations	U	1, 2, 3, 11, 12, 19	12
CO 2	Explain power series representation of analytic functions, Cauchy's integral formula, Cauchy's theorem	U	4, 5, 6, 13, 14, 20	12
CO 3	Illustrate about different types of singularities, residues and Rouche's theorem	U	7, 8, 15, 16, 21	11
CO 4	Explain Maximum Modulus theorem, maximum principle, Schwarz's lemma, convex functions and Hadmard's Three Circles Theorem.	U	9, 10, 17, 18, 22	11

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;