M. Sc. DEGREE END SEMESTER EXAMINATION : MARCH 2023 SEMESTER 2 : PHYSICS

COURSE: 21P2PHYT05: MATHEMATICAL METHODS IN PHYSICS - II

(For Regular - 2022 Admission and Supplementary - 2021 Admission)

Duration : Three Hours			x. Weights: 30				
	PART A						
	Answer any 8 questions		Weight: 1				
1.	Express the function $f(z)=(z^st)^2/z$ in the form $u(x,y)+iv(x,y)$		(A, CO 1)				
2.	Find the point (x,y) at which the function $f(z)=\leftert z ightert ^{2}$ is analytic.		(A, CO 1)				
3.	Find whether $f(z)=c^2$ (c is a constant), is analytic.		(A, CO 1)				
4.	Evaluate $\mathcal{L}(e^{at}sinwt)$.		(A)				
5.	Evaluate $\mathcal{L}(t^n e^{at})$.		(A)				
6.	Describe how Earth's nutation can be explained on the basis of transf	orms.	(An, CO 2)				
7.	Write any two recurrence formulae for Hermite polynomials.		(U)				
8.	B. Write any two recurrence formulae for Laguerre polynomial.		(A)				
9.	9. State two properties of one dimensional Green's function.						
10.	,		(A, CO 4)				
	partial differential equation.		(1 x 8 = 8)				
	PART B		(=)				
Answer any 6 questions We							
11.	State and prove Cauchy's integral theorem.		(A, CO 1)				
12.			(U)				
13.	13. Show that the Fourier transform of a Gaussian function is another Gaussian.						
14.	14. Find the Laplace transform of cosh(3t).		(A, CO 2)				
15.	5. Show that $xJ_n'(x)=-nJ_n(x)+xJ_{n-1}(x)$		(A)				
16.	6. Show that $P_n(x)=1.$		(A)				
17. Separate the partial differential equation $ abla^2\psi(r,\theta,z)+k^2\psi(r,\theta,z)=0$, into three ordinary differential equations.		(A, CO 4)					
18.	8. Explain the different boundary conditions used to solve differential equations.		(U, CO 4) (2 x 6 = 12)				
PART C							
	Answer any 2 questions		Weights: 5				
19.	What are analytic functions? Derive Cauchy Reimann equations.	(An)					
20.	Using Laplace transform solve $X^\prime + 4X = t$, with $X(0) = 0$.	(A, CO 2)					
21.	Obtain the orthogonal property of Legendre's polynomial.	(An)					
22.	Find the solution of Laplace equation in 2D cylindrical coordinates.	(A, CO 4)	(E v 2 – 10\				
			(5 x 2 = 10)				

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Apply methods of functions of complex variables for calculations of integrals	Α	1, 2, 3, 11	5
CO 2	Understand the concepts of Laplace and Fourier transforms.	U	6, 13, 14, 20	10
CO 4	Apply partial differential equations to solve problems.	Α	10, 17, 18, 22	10

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;