Reg. No	Name	23P2003

M. Sc. DEGREE END SEMESTER EXAMINATION : MARCH 2023 SEMESTER 2 : MATHEMATICS

COURSE: 21P2MATT06: BASIC TOPOLOGY

(For Regular - 2022 Admission and Supplementary - 2021 Admission)

Duration : Three Hours Max. Weights: 30

	PART A					
	Answer any 8 questions	Weight: 1				
1.	Does $int(A \cup B) = int(A) \cup int(B)$ hold for every subset A,B of a space X ?	(A, CO 1)				
2.	Find the closure of $A=\{0\}$ x $[-1,1]$ as a subset of R^2 with the standard topology?	(R, CO 1)				
3.	Define hereditary in a topological space. Is second countability a hereditary property?	(U, CO 1)				
4.	Write an example of a divisible property in a topological space.	(R, CO 2)				
5.	Is $A=[0,1]$ compact subset of ${\mathscr R}$, under the usual topology? Justify.	(A, CO 2)				
6.	Define a lebesgue number.	(R, CO 2)				
7.	Prove that every non empty connected subset is contained in a unique component.	(U, CO 3)				
8.	Is the set of rational numbers connected ? Justify.	(A, CO 3)				
9.	Define (i) T_2 space (ii) Completely regular Space.	(R, CO 4)				
10.	Define normal space. Give an example.	(R, CO 4) (1 x 8 = 8)				
	PART B					
	Answer any 6 questions	Weights: 2				
11.	Prove that a sequence in a co-finite space is convergent if and only if there exist 1 term which repeats infinitely many times.	(U, CO 1)				
12.	Define metric topology. Prove that every metric space is a topological space, where the topology is metric topology.	(R, CO 1)				
13.	Prove that every second countable space is Lindeloff.	(R, CO 2)				
14.	Suppose (X, au) be a space and $Y \in au$. Prove that a subset B of Y is open in Y if and only if it is open in X .	(R, CO 2)				
15.	A space is locally conneceted at a point x if and only if for every					
	neighbourhood N of x, the component of N containing x is a neighbourhood of x.	(R, CO 3)				
16.	Prove that the topological product of two connected space is connected.	(U, CO 3)				
17.	Prove that all metric spaces are $T_4.$	(U, CO 4)				
18.	Prove that the real line with semi open interval topology is normal.	(A, CO 4) (2 x 6 = 12)				

PART C

	Answer any 2 questions	Weights: 5
19.	State and prove the closure axiom on a topological space $(X,\mathscr{T}).$	(U, CO 1)
20.	Suppose $f:X o Y$ is continuous at $x_0\in X$, where X and Y are topological spaces. Prove that whenever $\{x_n\}$ converges to x_0 inX , sequence $\{f(x_n)\}$ converges to $f(x_0)$ inY .	(U, CO 2)
21.	(a)Establish five equivalent conditions for a space to be connected.(b) Prove that every space is a disjoint union of its components.	(U, CO 3)
22.	If A,B be compact subsets of topological spaces X,Y respectively and W be an open subset of $X\times Y$ containing the rectangle $A\times B$, then prove that there exists open sets U,V in X,Y respectively such that $A\subset U,B\subset V$ and $U\times V\subset W$.	(U, CO 4)
		$(5 \times 2 = 10)$

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Classify and compare different topological spaces	U	1, 2, 3, 11, 12, 19	12
CO 2	Continuous functions and Quotient map	U	4, 5, 6, 13, 14, 20	12
CO 3	Connectedness	U	7, 8, 15, 16, 21	11
CO 4	Separation Axiom	U	9, 10, 17, 18, 22	11

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;