Reg.	No	Name	22P1057

M. A DEGREE END SEMESTER EXAMINATION: OCTOBER 2022 **SEMESTER 1: ECONOMICS**

COURSE: 21P1ECOTO5: QUANTITATIVE TOOLS FOR ECONOMIC ANALYSIS

(For Regular - 2022 Admission and Supplementary - 2021 Admission)

Duration: Three Hours Max. Weights: 30

(Use of Scientific Calculator and Statistical tables are permitted)

PART A

	Answer any 8 questions		Weight: 1
1.	Define non singular matrix and give an example of it	(R)	
2.	Define a) singular matrix b) upper and lower triangular matrices.	(R)	
3.	What do you mean by consitent system of equation?	(R)	
4.	Give any two applications of differentiation	(R, CO 2)	
5.	Define consumer surplus	(R, CO 2)	
6.	What is Cobb-Douglas production function	(R, CO 2)	
7.	Give two applications of inegration in Economics.	(R, CO 3)	
8.	Define the integral of a function	(R, CO 3)	
9.	Write the dual of the following LP problem Maximise $z=4x_1+2x_2$, subject to $-x_1-x_2<-3,-x_1+x_2>-2,x_1,x_2>0$	(A)	
10.	What is the objective function in a linear prgramming problem?	(R, CO 4)	(1 x 8 = 8)

PART B

Answer any 6 questions

Weights: 2

3)

Find the determinant of the matrices $A=\begin{bmatrix}1&0&1\\2&3&0\end{bmatrix}$ and $B=\begin{bmatrix}0&1&4\\1&2&1\end{bmatrix}$ and 11. (A) show that |AB| = |A| |B|

 $If \,\, A = \,\, \left[egin{array}{cccc} -4 & 1 & 3 \ 2 & 5 & -1 \ 6 & 9 & 3 \end{array}
ight] \, and \, B = \left[egin{array}{cccc} -4 & 2 & 7 \ -2 & 1 & 5 \ 3 & 2 & 4 \end{array}
ight] \, then \, verify \, whether \, AB = BA$ 12.

- A firm's demand function is given by the equation $P=\frac{150}{e^{0.02}Q}$. Write down the equations 13. (A, CO for Total Revenue and Mariginal revenue. 2)
- The utility function of a consumer is given by $fig(x,yig) = 2x^3y + 3xy^2$ find the marginal (A) utitlities and also shwo that $f_{xy}=f_{yx}$
- Integrate the following functions $\left(i\right) rac{x^4}{\left(2+3x^5
 ight)^6} \quad \left(2\right) \ x \ \log x$ 15. (A)
 - (R, CO
- 16. Explain Simpson's one-third rule

17.	Explain the linear programming techniques	(R, CO 4)
18.	Explain the steps for solving an LPP using grpahical method.	(R) (2 x 6 = 12)
	PART C	
	Answer any 2 questions	Weights: 5
19.	Solve by Cramer's rule 5x-6y+4z = 15 7x+4y-3z = 19 2x+ y+6z = 46	(A)
20.	Explain various applications of partial derivatives in economics	(U, CO 2)
21.	The demand and supply function for a good are $P=50-2QandP=14+4Q$ Calculate the consumer surplus and producers surplus at equilibrium	(A)
22.	Solve the following LP problem by the simple method Maximise Z=3X+2Y subject to X+Y≤4, X-Y≤2; X,Y>0	(A, CO 4) (5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

СО	Course Outcome Description	CL	Questions	Total Wt.
CO 2		Α	4, 5, 6, 13, 20	10
CO 3		An	7, 8, 16	4
CO 4		Α	10, 17, 22	8

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;