Reg	. No	Name	22P1033

M. Sc. DEGREE END SEMESTER EXAMINATION: OCTOBER 2022 **SEMESTER 1: MATHEMATICS**

COURSE: 21P1MATT03: REAL ANALYSIS

(For Regular - 2022 Admission and Supplementary - 2021 Admission)

PART A

Duration: Three Hours Max. Weights: 30 **Answer any 8 questions** Weight: 1 1. Prove or disprove: there exists a function of bounded variation on [a, b] whose derivative is not bounded on (a, b). (An, CO 1) 2. Define total variation. Is the toatal variation can be o? (R, CO 1) If $\{f_n\}$ and $\{g_n\}$ converges uniformly on a E, prove that $\{f_n+g_n\}$ converges 3. (A, CO 3) uniformly on E. Prove that $\lim_{n o \infty} (1 + \frac{1}{n})^n = e$. 4. (A, CO 4) Suppose $f\geq 0$, f is continuous on [a,b] and $\int_{-}^{b}f(x)dx=0$. Prove that 5. (R, CO 2) $f(x) = 0, \ \forall x \in [a, b].$

6. If
$$E(z)=\sum_{n=0}^{\infty} \frac{z^n}{n!}$$
, prove that $E(0)=1 \ orall x\in \mathbb{R}$

- If $f \in \mathscr{R}(\alpha)$, prove that $|f| \in \mathscr{R}(\alpha)$. Is converse true? Justify. 7. (A)
- 8. Prove that every uniformly convergent sequence of bounded functions is (An, CO 1, CO 2) uniformly bounded
- If f is continous on [a,b], then prove that $f \in \mathscr{R}(\alpha)$ on [a,b] 9. (R)
- Prove that the set of discontinuities of a monotone function is countable. (An, CO 1) 10. $(1 \times 8 = 8)$

PART B

Answer any 6 questions Weights: 2

Suppose $c_n \geq 0$ for 1, 2, 3, ... , $\sum_{1}^{\infty}\! c_n$ converges, $\{s_n\}$ is a sequence of distinct 11. points in (a, b), and $lpha(x)=\sum_{n=1}^\infty c_n I(x-s_n)$. Let f be continuous on [a, b]. Then prove that $\int_a^b f dlpha=\sum_{n=1}^\infty c_n f\Big(s_n\Big)$ (A)

- State and prove Cauchy criterion for uniform convergence of a series of functions. 12. (R, CO 3)
- Let $\{a_{ij}\}, i=1,2,3,\ldots; j=1,2,3,\ldots$ be a double sequence. If 13. $\sum_{i=1}^{\infty} |a_{ij}| = b_i, i = 1, 2, 3, \ldots$ and $\sum b_i$ converges, prove that (U, CO 4) $\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}a_{ij}=\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}a_{ij}$
- Suppose K is compact, and 14. (a) $\{f_n\}$ is a sequence of continuous functions on K, (U)

(b) $\{f_n\}$ converges pointwise to a continuous function f on K, (c) $f_n(x) \geq f_{n+1}(x)$ for all $x \in K, \ n=1,2,3.$. . Then prove that $f_n \to f$ uniformly on K.

- 15. State and prove the theorem for change of variable in integration. (A, CO 2)
- 16. Define equivalent paths. State and prove a necessary and sufficient condition for equivalence of two paths which are one to one on its domain. Give an example (Cr, CO 1) for non-equivalent paths
- 17. Prove that $f\in \mathscr{R}(\alpha)$ on [a,b] iff for every $\epsilon>0$, there exists a partition P such that $U(P,f,\alpha)-L(P,f,\alpha)<\epsilon.$
- 18. State and prove the additive property of total variation of a function of bounded variation.

 (An, CO 1)

PART C Answer any 2 questions

a) Suppose lpha increases on [a,b], $a\leq x_0\leq b$, lpha is continuous at x_0 , $f(x_0)=1$, and f(x)=0 if $x\neq 0$. Prove that $f\in\mathscr{R}(lpha)$ and that $\int fdlpha=0$ b) Suppose $f\geq 0$, f is continuous on [a,b], and $\int_a^b f(x)dx=0$. Prove that f(x)=0 for all $x\in [a,b]$.

Weights: 5

a) Define the total variation of a function of bounded variation. Prove that the total variation is zero iff f is constant.
b) State and prove the additive property of total variation of a function of bounded variation.

Suppose the series $\sum_{n=0}^\infty a_n x^n$ and $\sum_{n=0}^\infty b_n x^n$ converge in the segment S=(-R,R). Let E be the set of all $x\in S$ at which $\sum_{n=0}^\infty a_n x^n=\sum_{n=0}^\infty b_n x^n$. If E has a limit point in S, then prove that $a_n=b_n$ for $n=0,1,2,\ldots$

Prove that the series $\sum \frac{x^2+n}{n^2}$ converges uniformly in every bounded interval, but does not converge absolutely for any value of x. (5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

19.

СО	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Explain the functions of bounded variations, rectifiable curves, paths and equivalence of paths.	U	1, 2, 8, 10, 16, 18, 20	13
CO 2	Illustrate the properties of Riemann-Stieljes integral.	An	5, 6, 8, 15, 17, 19	12
CO 3	Analyze the uniform convergence of a sequence of functions with continuity, integrability, differentiability.	An	3, 12, 22	8
CO 4	Apply the properties of power series to exponential, logarithmic and trigonometric functions.	Α	4, 13, 21	8

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;