Reg. No	Name
B. Sc. DEGREE END SEMESTER EXAMINATION - OCTOBER 2019	
SEMESTER –5 :	: PHYSICS (CORE COURSE)
COURSE: 15U5CRPHY08: DIGITAL ELECTRONICS	
(Common for Regular 2017 Admission & Improvement 2016/Supplementary 2016/2015 Admissions)	
Time: Three Hours	Max. Marks: 60
PART – A (Very Short answer questions)	
Answer all the questions. Each question carries 1 mark	
1. Convert (10.6875) ₁₀ to an equivalent bas	se 2 number.
2. Determine the base of the numbers in the following operation to be correct: $54/4 = 13$.	
3. Give the truth table of XNOR gate.	
4. Find the complement of the function F =	= x'yz' + x'y'z.
5. Construct an OR gate using NAND gates.	•
6. What are maxterms?	
7. How many flip-flops are required for sto	ring 32 bits of information?
8. What is a half subtractor?	
9. What is mod-N counter?	
10. Describe shift registers.	$(1 \times 10 = 10)$
PART – B (Short answer questions)	
Answer any Seven questions. Each question carries 2 marks	
11. The solutions to the quadratic equation	x^2 -11x+22=0 are x=3 and x=6. What is the base of the
numbers?	
12. State and explain duality theorem.	
13. Write the laws of Boolean algebra.	
14. What is K-map? Explain the advantages	of K-map.
15 What is the logic levels used in TTI logic	system?

- 15. What is the logic levels used in TTL logic system?
- 16. Distinguish between combinational and sequential digital systems.
- 17. What are the differences between synchronous and asynchronous counters?
- 18. Describe the operation of half adder.
- $(2 \times 7 = 14)$ 19. Explain T flip-flop.

PART – C (Problem/Derivations)

Answer any Four questions. Each question carries 4 marks

- 20. What is a BCD code? Explain its with examples. What are its advantages and disadvantages?
- 21. Express the Boolean function F = A+B'C as a sum of minterms and draw the gate implementation of the function interms of sum of minterms.
- 22. Simplify the Boolean expressions:

- (a) $AB + \overline{AC} + A\overline{BC}(AB + C) = 1$
- (b) $(A+B)(\overline{A}+C)(B+C) = (A+B)(\overline{A}+C)$
- 23. Give the operations of MSJK flip-flop. How it eliminates the race-around condition?
- 24. Explain the working of a 4-bit binary adder.
- 25. Explicate the operation of a demultiplexer.

 $(4 \times 4 = 16)$

PART – D (Long answer questions)

Answer any Two questions. Each question carries 10 marks

- 26. (a Explain subtraction with 2's complement method.
 - (b) Subtract the following using 1's complement method:

- (c) Convert (2598.675)₁₀ to hexadecimal
- (d) Convert (378.93)₁₀ to octal
- 27. Given the expression $F = \overline{A}C + \overline{A}B + A\overline{B}C + BC$, obtain the simplified expression in
 - (a) Express this function as sum of minterms
 - (b) Find the minimal sum-of-products expression using Karnaugh map. Also draw the gate implementation of the simplified function
- 28. With the logic diagram explain 4 bit adder subtractor.
- 29. Explain the working of 4-bit shift register operates in serial in serial out mode.

 $(10 \times 2 = 20)$
