Name

M. Sc. DEGREE END SEMESTER EXAMINATION : OCTOBER 2022

SEMESTER 1 : MATHEMATICS

COURSE : 21P1MATT02: ALGEBRA

(For Regular - 2022 Admission and Supplementary - 2021 Admission)

Duration : Three Hours

PART A

Answer any 8 questions

1.	Give an example of an infinite torsion group.	(An, CO 1)
2.	Define torsion subgroup of an abelian group. Find the torsion subgroup of the multiplicative group R^st of nonzero real numbers.	(U, CO 1)
3.	Find the sum and product of $f(x)=2x^2+3x+4$ and $g(x)=3x^2+2x+3~$ in $\mathbb{Z}_6[x].$	(U, CO 2)
4.	For the evaluation homomorphism $\phi_4:\mathbb{Z}_7[x] o\mathbb{Z}_7$, evaluate $\phi_5[(x^3+2)(4x^2+3)(x^7+3x^2+1)].$	(E)
5.	Find all $c\in\mathbb{Z}_3$ such that $\mathbb{Z}_3[x]/< x^3+x^2+c>$ is a field?	(A, CO 2)
6.	Define a constructible number.	(R, CO 3)
7.	Find all irreducible polynomials of degree 2 in $\mathbb{Z}_2[x].$	(A, CO 3)
8.	Show that $R[x]/\langle x^2+1 angle\cong\mathbb{C}.$	(A, CO 3)
9.	True or False: $\mathbb{Q}(i)$ is a splitting field over \mathbb{Q} . Justify.	(A, CO 4)
10.	State the Conjugation Isomorphisms Theorem for Field Theory.	(R, CO 4) (1 x 8 = 8)
	PART B	
	PART B Answer any 6 questions	Weights: 2
11.		Weights: 2 (A, CO 1)
11. 12.	Answer any 6 questions Let G,H and K be finitely generated abelian groups. Show that if $G imes K$ is	-
	Answer any 6 questions Let G,H and K be finitely generated abelian groups. Show that if $G imes K$ is isomorphic to $H imes K$, then $G\cong H.$	(A, CO 1)
12.	Answer any 6 questions Let G,H and K be finitely generated abelian groups. Show that if $G imes K$ is isomorphic to $H imes K$, then $G \cong H$. Show that for a prime number p , every group of order p^2 is abelian.	(A, CO 1) (An, CO 1)
12. 13.	Answer any 6 questions Let G,H and K be finitely generated abelian groups. Show that if $G \times K$ is isomorphic to $H \times K$, then $G \cong H$. Show that for a prime number p , every group of order p^2 is abelian. Show that $x^4 - 22x + 1$ is irreducible over \mathbb{Q} . If F is a field, prove that every non-constant polynomial $f(x) \in F[x]$ can be factored in $F[x]$ into a product of irreducible polynomials, the irreducible polynomials being unique except for order and for unit factors in F .	(A, CO 1) (An, CO 1) (E, CO 2)
12. 13. 14.	Answer any 6 questions Let G, H and K be finitely generated abelian groups. Show that if $G \times K$ is isomorphic to $H \times K$, then $G \cong H$. Show that for a prime number p , every group of order p^2 is abelian. Show that $x^4 - 22x + 1$ is irreducible over \mathbb{Q} . If F is a field, prove that every non-constant polynomial $f(x) \in F[x]$ can be factored in $F[x]$ into a product of irreducible polynomials, the irreducible polynomials being unique except for order and for unit factors in F . Find the unique factorization of $x^4 + 3x^3 + 2x + 4$ in $\mathbb{Z}_5[x]$. Show that the elements of $GF(p^n)$ are precisely the zeroes in $\overline{\mathbb{Z}_p}$ of the	(A, CO 1) (An, CO 1) (E, CO 2) (A, CO 2)
12. 13. 14. 15.	Answer any 6 questions Let G, H and K be finitely generated abelian groups. Show that if $G \times K$ is isomorphic to $H \times K$, then $G \cong H$. Show that for a prime number p , every group of order p^2 is abelian. Show that $x^4 - 22x + 1$ is irreducible over \mathbb{Q} . If F is a field, prove that every non-constant polynomial $f(x) \in F[x]$ can be factored in $F[x]$ into a product of irreducible polynomials, the irreducible polynomials being unique except for order and for unit factors in F . Find the unique factorization of $x^4 + 3x^3 + 2x + 4$ in $\mathbb{Z}_5[x]$. Show that the elements of $GF(p^n)$ are precisely the zeroes in $\overline{\mathbb{Z}_p}$ of the polynomial $x^{p^n} - x$ in $\mathbb{Z}_p[x]$. Define algebraic and transcendental numbers. Show that the set of all	(A, CO 1) (An, CO 1) (E, CO 2) (A, CO 2) (An, CO 3)

Max. Weights: 30

Weight: 1

18.	Give an example of two finite normal extensions K_1 and K_2 of the same field F such that K_1 and K_2 are not isomorphic but $G(K_1/F)\cong G(K_2/F).$	(E, CO 4)
		(2 x 6 = 12)
	PART C	
	Answer any 2 questions	Weights: 5
19.	(a). Let X be a G-set.For $x_1, x_2 \in G$, let $x_1 \sim x_2$ if and only if there exists $g \in G$ such that $gx_1 = x_2$. Show that \sim is an equivalence relation on X. What is the equivalence class of $x \in X$ under this equivalence relation known as?	
	(b). Let X be a G-set. Show that $G_x = \{g \in G \mid gx = x\}$ is a subgroup of G for each $x \in X$. What is this subgroup known as? (c). Let G be a group of order p^n and let X be a finite G-set. Let $X_G = \{x \in X \mid gx = x \text{ for all } g \in G\}$. Show that $ X \cong X_G \pmod{p}$.	(E, CO 1)
20.	(a). State and prove Eisenstein's criterion for irreducibility over \mathbb{Q} . (b). Show that the p^{th} cyclotomic polynomial is irreducible over \mathbb{Q} for any prime p .	(E, CO 2)
21.	 (a). Define a constructible number. Show that the set of all constructible numbers forms of a subfield F of the field of real numbers. (b). Show that if γ is constructible and γ ∉ Q, show that [Q(γ) : Q] = 2^r for some integer r ≥ 0. 	(An, CO 3)
22.	Find the splitting field K of x^4+1 over $\mathbb Q$. Compute $G(K/\mathbb Q)$, find its subgroups and the corresponding fixed fields and draw the subgroup and subfield lattice diagrams.	(E, CO 4)
		(5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

со	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Develod ideas of finitely generated abelian groups, Sylow theorems and applications.	E	1, 2, 11, 12, 19	11
CO 2	Explain the concept of rings of polynomials, factorisation of polynomials and ideal structure.	E	3, 5, 13, 14, 20	11
CO 3	Illustrate the idea of extension fields, algebraic extensions and geometric constructions.	E	6, 7, 8, 15, 16, 21	12
CO 4	Devrlop ideas of automorphisms of fields, isomorphism extension theorem and Galois theory.	E	9, 10, 17, 18, 22	11

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;