Reg. No

M. Sc. DEGREE END SEMESTER EXAMINATION : OCTOBER 2022 SEMESTER 1 : MATHEMATICS

COURSE : 21P1MATT01 : LINEAR ALGEBRA

(For Regular - 2022 Admission and Supplementary - 2021 Admission)

Duration : Three Hours

	PART A	
	Answer any 8 questions	Weight: 1
1.	Find the rank of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(x, y, z) = (x, y)$.	(An, CO 2)
2.	Define annihilator of a subset S of a vector space $V.$ What is the annihilator of $S=\{0\}$?	(U, CO 2)
3.	Show that there is at least one non-zero polynomial that annihilates a given linear operator on a finite-dimensional vector space.	(A, CO 4)
4.	Is the set of vectors $lpha=(a_1,\ldots,a_n)\in \mathbb{R}^n$ such that $a_1a_2=0$, a subspace of \mathbb{R}^n ?	(A, CO 1)
5.	Define the terms characteristic value, characteristic vector and characteristic space with respect to a linear operator T on a vector space V .	(U, CO 4)
6.	Define commutative and non-commutative rings. Give examples for each.	(U, CO 3)
7.	Define a determinant function.	(U, CO 3)
8.	Define minimal polynomial for a linear operator T on a finite dimensional vector space V . State three properties which characterize the minimal polynomial.	(U, CO 4)
9.	Let V be the (real) vector space of all functions f from $\mathbb R$ into $\mathbb R.$ Is the set of all functions f such that $f(-1)=0$, a subspace of V ?	(U, CO 1)
10.	Let $T: \mathbb{R}^2 o \mathbb{R}^2$ be defined by $T(x_1, x_2) = (x_2, x_1)$. Is T linear? Explain	(U, CO 2) (1 x 8 = 8)
	PART B	
	Answer any 6 questions	Weights: 2

	Answer any 6 questions	Weights: 2
11.	If W_1 and W_2 are subspaces of a finite-dimensional vector space, show that $W_1=W_2$ if and only if $W_1^\circ=W_2^\circ.$	(An, CO 2)
12.	Let T be a linear operator on a finite dimensional vector space V . Show that the minimal polynomial divides the characteristic polynomial for T .	(A, CO 4)
13.	If A^t denotes the transpose of an $n imes n$ matrix A with complex entries, prove that det A^t = det A .	(A, CO 3)

22P1004

Max. Weights: 30

Name

14.	Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V . Show that T is diagonalizable if and only if the minimal polynomial for T is a product of linear polynomials over F .	(A, CO 4)
15.	Show that the vectors $\alpha_1 = (1, 1, 0, 0), \alpha_2 = (0, 0, 1, 1), \alpha_3 = (1, 0, 0, 4)$ and $\alpha_4 = (0, 0, 0, 2)$ form a basis for \mathbb{R}^4 . Find the coordinates of each of the standard basis vectors in the ordered basis $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$.	(A, CO 1)
16.	Are the vectors $(1,1,2,4), (2,-1,-5,2), (1,-1,-4,0)$ and $(2,1,1,6)$ linearly independent in R^4 ? Justify your answer.	(U, CO 1)
17.	Find the subspace of \mathbb{R}^4 annihilated by the three linear functionals $f(x_1,x_2,x_3,x_4)=x_1+2x_2+2x_3+x_4,\ f(x_1,x_2,x_3,x_4)=2x_2+x_4$ and $f(x_1,x_2,x_3,x_4)=-2x_1-4x_3+3x_4.$	(A, CO 2)
18.	Define hyperspace in a vector space. Give an example.	(U, CO 3) (2 x 6 = 12)
	PART C	
	Answer any 2 questions	Weights: 5
19.	(a) Let T be a linear operator on a finite dimensional space V . Let c_1, c_2, \dots, c_k be the distinct characteristic values and W_1, W_2, \dots, W_k be the corresponding characteristic spaces. Prove that $\dim(W_1 + W_2 + \dots + W_k) = \dim W_1 + \dim W_2 + \dots + \dim W_k$. (b) If W_1 and W_2 are subspaces of V then prove that they are independent if and only if $W_1 \cap W_2 = 0$.	(An, CO 4)
20.	 a) Define rank and nullity of a linear transformation. (b) Let V be finite dimensional and T : V → W be a linear transformation. Prove that Rank T + Nullity T = dim V (c) Determine a linear transformation from R⁴ into R³ which has its range the subspace spanned by (1,0,0) and (1,1,0). What is the Nullity of such a linear transformation? 	(A, CO 2)
21.	(a) Let D be an n-linear function on the space of $n \times n$ matrices over a field K . Suppose D has the property that $D(A) = 0$ whenever two adjacent rows of A are equal. Show that D is alternating. (b) Let $n > 1$ and let D be an alternating $(n - 1)$ linear function on an $(n - 1) \times (n - 1)$ matrix over K . Show that for each $j, j = 1, \ldots, n$, the function E_j defined by $E_j(A) = \sum_{i=1}^n (-1)^{(i+j)} A_{ij} D_{ij}(A)$ is an alternating n -linear function on the space of $n \times n$ matrices A . If D is the determinant function, so is E_j .	(An, CO 3)
22.	Let V be an n-dimensional vector space over the field F and let \mathscr{B} and \mathscr{B}' be two ordered bases of V . Show that there is a unique necessarily invertible $n \times n$ matrix P with entries in F such that $[\alpha]_{\mathscr{B}} = P[\alpha]_{\mathscr{B}'}$ and $[\alpha]_{\mathscr{B}'} = P^{-1}[\alpha]_{\mathscr{B}}$.	(An, CO 1)
		(5 x 2 = 10)

OBE: Questions to Course Outcome Mapping

со	Course Outcome Description	CL	Questions	Total Wt.
CO 1	Summarize the concepts of vector spaces, subspaces, basis and dimension, coordinates and properties of row equivalence	U	4, 9, 15, 16, 22	11
CO 2	Explain the linear transformations and their algebra and representation of transformations by matrices.	An	1, 2, 10, 11, 17, 20	12
CO 3	Demonstrate the ideas of commutative Rings, determinant functions, permutation and uniqueness of determinants, additional properties of determinants	An	6, 7, 13, 18, 21	11
CO 4	Illustrate the ideas of characteristic values, annihilating polynomials, invariant subspace, direct sum decomposition	An	3, 5, 8, 12, 14, 19	12

Cognitive Level (CL): Cr - CREATE; E - EVALUATE; An - ANALYZE; A - APPLY; U - UNDERSTAND; R - REMEMBER;