Reg.	No	Name	23U656

B. Sc. DEGREE END SEMESTER EXAMINATION : MARCH 2023 SEMESTER 6 : PHYSICS

COURSE: 19U6CRPHY12: SOLID STATE PHYSICS

(For Regular - 2020 Admission and Supplementary - 2019 Admission)

Time : Three Hours Max. Marks: 60

PART A Answer any 8 (2 marks each)

- 1. Write down the expression for electrical conductivity of an intrinsic semiconductor. Explain the terms.
- 2. State Bloch theorem and What are bloch functions.
- 3. Explain the variation of susceptibility with temperature for antiferromagnetic materials.
- 4. What do you mean by a free electron gas model?
- 5. What are majority carriers and minority carriers?
- 6. Define the Curie-Weiss law. Discuss its application for ferromagnetic materials.
- 7. Distinguish between mono crystalline and polycrystalline substances?
- 8. Show that when a superconductor is placed in an external magnetic field, the field must penetrate up to a certain depth inside the superconductor. Hence define the penetration depth.
- 9. What are Bravias lattices?
- 10. Explain the concept of reciprocal lattice?

 $(2 \times 8 = 16)$

PART B Answer any 6 (4 marks each)

- An iron rod of 0.5 cm² area of cross section is subjected to a magnetising field of 1200 Am⁻¹. If the susceptibility of iron is 599, calculate (i) the permeability (ii) magnetic induction B in the specimen and (iii) magnetic flux produced
- 12. The dielectric constant of a medium is 4. The electric field in the dielectric is10⁶ Vm⁻¹ Calculate the electric displacement vector and polarization.
- 13. What is meant by Fermi energy? Discuss the temperature effects on the free electron Fermi gas?
- 14. A Josephson junction is known to radiate an electro-magnetic wave of frequency 0.24x 10¹² Hz. What is the dc voltage applied across the junction?
- 15. Analyse the conduction mechanism for n-type and p-type semiconductors.
- 16. Discuss the origin of energy bands in solids based on Kronig-Penney model?
- 17. Find the Miller indices of a plane that makes intercepts of 2 Å, 3 Å and 4 Å on the axes of an orthorhombic crystal with a: b: c=4: 3: 2?
- 18. The first order spectrum of a beam of X-rays diffracted by a silicon crystal corresponds to an angle of 30. The distance between the corresponding parallel planes is 3 A^O. Calculate the wavelength of X-rays used?

 $(4 \times 6 = 24)$

PART C Answer any 2 (10 marks each)

- 19. Derive an expression for the binding energy of an ionic crystal. Obtain an expression for the Madelung constant. Evaluate the Madelung constant for a linear ionic crystal.
- 20. Explain the representation of crystal planes. Briefly explain the procedure to obtain the Miller indices of a plane?
- 21. Desrcibe Hall Effect in metals. Prove that Hall voltage is proportional to current density. Explain Hall Coefficient.
- 22. Explain how and why are the ferromagnetic domains formed? Draw a typical B-H loop and describe the different magnetisation processes, which lead to the formation of a B-H loop. What are the advantages and disadvantages of having a B-H loop in a material?

 $(10 \times 2 = 20)$