Reg. No	Name	23U673
---------	------	--------

B. Sc. DEGREE END SEMESTER EXAMINATION: MARCH 2023

SEMESTER 6: PHYSICS

COURSE: 19U6CRPHY13: COMPUTATIONAL PHYSICS (EL)

(For Regular - 2020 Admission and Supplementary - 2019 Admission)

Time : Three Hours Max. Marks: 75

PART A Answer any 10 (2 marks each)

- 1. Briefly outline, basic Gauss elimination, in the case of a system of linear equations.
- 2. List the total number of operations, required for Gauss elimination method.
- 3. What is a stopping criterion?
- 4. What are analytic solutions? Are there any limitations, with such solutions?
- 5. Differentiate between interpolation and extrapolation.
- 6. What is a shift Operator? Give its 2 properties.
- 7. Obtain the Forward difference table for a set of 5 points.
- 8. Define the forward difference operator and arrive at the expression for the second forward differences.
- 9. Give a graphical analysis of implementing Trapezoidal rule and also mark the error involved in this calculation.
- 10. What is the major difference between Runge-Kutta 1st and 2nd order methods to solve 1st order Ordinary Differential Equations.
- 11. Discuss Taylor series method in solving 1st order Ordinary Differential Equations.
- 12. Give a graphical analysis of implementing Simpson's 1/3 rule and also mark the error involved in this calculation.

 $(2 \times 10 = 20)$

PART B Answer any 7 (5 marks each)

13. Solve the following system of equation using simple Gauss elimination, x+2y+3z=8

$$2x + 4y + 9z = 8$$
$$4x + 3y + 2z = 2$$

14. Solve the following system of equation using simple Gauss elimination, with partial pivoting, 2x+2y+z=6

$$4x + 2y + 3z = 4$$
$$x + y + z = 0$$

- 15. Find a root of the given equation using, secant method: $x e^x + 2 = 0$.
- 16. Show that $\Delta(\log(x)) = \log(1 + h/x)$
- 17. Find the polynomial f (x) by using Lagrange's formula and hence find f(3) for (x,y): (0,2), (1,3), (2,12) and (5,147)
- 18. Evaluate $\Delta(Cos(x))$
- 19. From the following data sets obtain the first and second derivatives for x = 1, 2

- 20. Find y(0.2) for dy/dx = (x-y)/2, y(0) = 1, with step length 0.1 using Runge-Kutta 2 method
- 21. Using Taylor series method, upto 3rd order, find solution for the differential equation $y' = x-y^2$, y(0)=1.
- 22. Find y(0.1) for dy/dx = (x-y)/2, y(0) = 1, with step length 0.1 using Runge-Kutta method (5 x 7 = 35)

PART C Answer any 2 (10 marks each)

- 23. Explain bisection, false position, Newton-Raphson and secant method can be used to find roots of equations and make a comparison of the associated convergences.
- 24. Derive the Newton's forward interpolation formula.
- 25. Discuss the linearization fitting techniques to be used to solve the following non-linear laws: $y=ae^{bx}$; $xy^a=b$ and $y=ab^x$
- 26. With Mathematical proof, show that Modified Euler method is more accurate than Euler method.

 $(10 \times 2 = 20)$