Reg. No

Name

B. Sc. DEGREE END SEMESTER EXAMINATION : MARCH 2023

SEMESTER 6 : CHEMISTRY

COURSE : 19U6CRCHE09: INORGANIC CHEMISTRY

(For Regular - 2020 Admission and Supplementary - 2019 Admission)

Time : Three Hours

Max. Marks: 60

PART A

Answer All (1 mark each)

- 1. Why are macrocyclic ligands more stable?
- 2. Give an example of an interhalogen compound
- 3. What are super acids? Give an example.
- 4. What is the coordination number of cation and anion in ZnS structure?
- Predict whether the following complexes are Jahn-Teller distorted or not?
 a) [Fe(Cl)₆]³⁻
 b) [Fe(CN)₆]⁴⁻
- 6. What is meant by chelate? Give an example.
- 7. Name the two impurity defects.
- 8. What type of defect create F-centres in the crystal?

 $(1 \times 8 = 8)$

PART B Answer any 6 (2 marks each)

- 9. Discuss the geometry of CIF₃ and ICl₄⁻
- 10. Arrange the following oxo acids in the increasing order of their acid strengths; HClO₄, HClO₃, HClO₂, HClO.
- 11. La(OH)₃ is most basic while Lu(OH)₃ is least basic. Why?
- ^{12.} In $[Cu(H_2O)_6]^{2+}$, the axial Cu-O bonds are longer than equatorial Cu-O bonds, Why?
- 13. When a coordination compound CoCl₃.6NH₃ is mixed with AgNO₃, three moles of AgCl is precipitated per mole of the compound. Write the structural formula of the complex and its IUPAC name.
- 14. State and explain Jahn-Teller Theorem.
- 15. Explain why crystal defects are sometimes called thermodynamic defects.
- 16. In a metallic oxide, oxide ions are arranged in HCP array and the metal ions occupy two-thirds of octahedral voids. What is the formulae of metal oxide?

 $(2 \times 6 = 12)$

PART C

Answer any 4 (5 marks each)

- 17. What is limiting radius ratio? Explain how it is helpful in structural determination of ionic crystals.
- 18. What is lanthanide contraction? What are its causes?

- 19. Discuss in detail about the magnetic and spectral properties of actinides.
- ^{20.} Explain, why $[NiCl_4]^{2-}$ is paramagnetic while $[Ni(CO)_4]$ is diamagnetic using valence bond theory?
- 21. Discuss the various factors that affect the stability of complexes.
- 22. Explain the electrical conduction mechanism in silicon which is doped with a) Gallium and b) Phosphorous.

(5 x 4 = 20)

PART D Answer any 2 (10 marks each)

- 23. Explain the preparation, properties, and bonding in diborane.
- 24. How do the following properties vary in the transition elements? (a) ionic character (b) variable oxidation states (c) ability to form complexes (d) atomic radii
- 25. Describe the postulates of Werner's coordination theory. Discuss how it is used to explain the structure and the bonding in coordination complexes?
- ^{26.} Explain the salient aspects of molecular orbital theory. Describe the MO diagram of $[CoF_6]^{3-}$ and predicts its magnetic behavior.

(10 x 2 = 20)