B. Sc. DEGREE END SEMESTER EXAMINATION: MARCH 2023

SEMESTER 6: MATHEMATICS

COURSE: 19U6CRMAT09: REAL ANALYSIS - 2

(For Regular - 2020 Admission and Supplementary - 2019 Admission)

Time: Three Hours Max. Marks: 75

PART A

Answer any 10 (2 marks each)

- 1. Define discontinuity of the second kind of a function f.
- 2. Define discontinuity of the first kind from the left of a function f.
- 3. Define the Dirichlet's function.
- 4. Is every Riemann integrable function continuous? Justify your answer.
- 5. If n is a non-negative integer, prove that $\Gamma(n+1)=n!$.
- 6. Discuss the kind of discontinuity, if any, of the function

Discuss the kind of discontinuity, if all
$$f(x)=\left\{egin{array}{c} x-|x| \ x \end{array}
ight. when \ x
eq 0 \ 2 \ when \ x=0 \ \end{array}
ight.$$

- 7. When is a partition P^* of [a,b] said to be finer than another partition P of [a,b]?
- 8. Show that the series $\sum r^n \sin{(a^n \theta)}, \ 0 < r < 1$, converges uniformly for all real values of θ .
- 9. Show that the series $\sum \frac{\sin{(x^2+n^2x)}}{n(n+1)}$, converges uniformly for all real x .
- 10. Compute $\Gamma(-\frac{9}{2})$.
- 11. State and prove the symmetrical property of the Beta function.
- 12. Define uniform convergence of a sequence of functions $\{f_n\}$.

 $(2 \times 10 = 20)$

PART B

Answer any 5 (5 marks each)

- 13. Show that a bounded function f, having a finite number of points of discontinuity on [a,b] is integrable on [a,b].
- 14. Show that if f is bounded and integrable on [a,b] and k is a number such that $|f(x)| \leq k$ for all $x \in [a,b]$, then $|\int_a^b f \, dx| \leq k(b-a)$.
- 15. Show that the sequence $\{f_n\}$, where $f_n(x)=rac{x}{1+nx^2}$ is uniformly convergent on any closed interval.
- 16. Test for uniform convergence of the series

$$rac{2x}{1+x^2} + rac{4x^3}{1+x^4} + rac{8x^7}{1+x^8} + \dots, \ -rac{1}{2} \le x \le rac{1}{2}$$

- 17. State and prove the intermediate value theorem.
- 18. Show that $B(m,n)=\int_0^\infty \frac{x^{n-1}dx}{(1+x)^{m+n}}=\int_0^\infty \frac{x^{m-1}dx}{(1+x)^{m+n}},\, m>0,\, n>0.$

- 19. Discuss the convergence of $\int_0^2 \frac{dx}{2x-x^2}$.
- 20. Show that the function f(x)=1/x is not uniformly continuous on (0,1].

 $(5 \times 5 = 25)$

PART C Answer any 3 (10 marks each)

- 21. Show that the sequence $\{f_n\}$, where $f_n(x)=x^n$ is uniformly convergent on [0,k], where k<1 and is pointwise convergent on [0,1].
- 22. Prove that a necessary and sufficient condition for the integrability of a bounded function f is that to every $\epsilon>0$, there corresponds $\delta>0$ such that for every partition P of [a,b] with norm $\mu(P)<\delta$, $U(P,f)-L(P,f)<\epsilon$.
- 23. (i) If n>1 is a positive integer, show that $B(m,n)=\frac{(n-1)!}{m(m+1)(m+2)\dots(m+n-2)(m+n-1)}$. (ii) If m>1 is a positive integer, show that $B(m,n)=\frac{(m-1)!}{n(n+1)(n+2)\dots(n+m-2)(n+m-1)}$. (iii) If m>1 and n>1 are positive integers, prove that $B(m,n)=\frac{(m-1)!(n-1)!}{(m+n-1)!}$.
- 24. Show that if a function f is continuous on a closed interval [a,b] and f(a) and f(b) are of opposite signs, then there exists at least one point $\alpha\in(a,b)$ such that $f(\alpha)=0$. (10 x 3 = 30)