\qquad Name

B. Sc. DEGREE END SEMESTER EXAMINATION - MARCH 2022
 SEMESTER 6 : MATHEMATICS
 COURSE : 19U6CRMAT11: LINEAR ALGEBRA AND GRAPH THEORY
 (For Regular - 2019 Admission)

Time : Three Hours
Max. Marks: 75

PART A

Answer any 10 (2 marks each)

1. Determine whether the set of all 2×2 real matrices is a vector space under regular scalar multiplication but with vector addition defined to be matrix multiplication.That is, $u \odot v=u v$
2. Prove that in any vector space $\mathrm{V}, \alpha \odot \mathbf{0}=\mathbf{0}$, for every scalar α.
3. Prove that for any vector \mathbf{w} in a vector space $V, \mathbf{1} \odot \mathbf{w}=\mathbf{- w}$.
4. Define functions.
5. Define the following terms;
a) Domain
b) Range
c) Image
6. Find $f(2), f(5)$, and $f(-5)$ for $f(x)=1 / x^{2}$
7. define a graph
8. Draw the graph whose adjacency matrix is
$\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 2 & 0\end{array}\right]$
9. State and prove first theorem on graph theorey
10. Check wheather the following graph is Euler

11. Draw K_{5} and mark a maximum matching in the graph
12. Define a maximal non Hamiltonian graph with an example

PART B
Answer any 5 (5 marks each)
13. Determine whether $\mathbb{S}=\left\{p(t) \in \mathbb{P}^{2} \mid p(2)=0\right\}$ is a subspace of \mathbb{P}^{2}.
14. Determine whether the set of two-dimensional column matrices with all components real and equal is a vector space under regular addition but with scalar multiplication defined as

$$
\alpha \odot\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
-\alpha a \\
-\alpha b
\end{array}\right]
$$

15. Determine whether the transformation L is linear if $L: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}^{\mathbf{1}}$ is defined $b y \mathrm{~L}\left[\begin{array}{ll}a & b\end{array}\right]=a b$ for all real numbers a and b.
16. Determine whether the transformation \mathbf{L} is linear if $L: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}^{\mathbf{2}}$ is defined by $L\left[\begin{array}{ll}a & b\end{array}\right]=\left[\begin{array}{ll}a+2 & b-2\end{array}\right.$] for all real number $s a$ and b.
17. Write down the adjacency matrix and the incidence matrix for the graph

18. Prove that a graph G is connected if and only if G has a spanning tree
19. Prove that a simple graph G is Hamiltonian if and only if its closure $c(G)$ is Hamiltonian
20. Explain Konigsberg bridge problem and its solution
(5 x $5=25$)
PART C
Answer any 3 (10 marks each)
21. Find a basis for the span of the vectors in

$$
\mathbb{C}=\left\{t^{3}+3 t^{2}, 2 t^{3}+2 t-2, t^{3}-6 t^{2}+3 t-3,3 t^{2}-t+1\right\}
$$

22. Find matrix representations for the linear transformation $T: R^{2} \rightarrow R^{2}$ is defined by
$\boldsymbol{T}\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]=\left[\begin{array}{c}11 \mathrm{a}+3 \mathrm{~b} \\ -5 \mathrm{a}-5 \mathrm{~b}\end{array}\right]$
(a) with respect to the standard basis $C=\left\{\left[\begin{array}{ll}1 & 0\end{array}\right]^{\top},\left[\begin{array}{ll}0 & 1\end{array}\right]^{\top}\right\}$
(b) with respect to the basis $D=\left\{\left[\begin{array}{ll}1 & 1\end{array}\right]^{\top},\left[\begin{array}{ll}1 & -1\end{array}\right]^{\top}\right\}$
(c) with respect to the basis $\mathrm{E}=\left\{\left[\begin{array}{ll}3 & -1\end{array}\right]^{\top},\left[\begin{array}{ll}1 & -5\end{array}\right]^{\top}\right\}$
23. State and prove Whitney's theorem
24. State and prove Dirac theorem
