B.Sc. DEGREE END SEMESTER EXAMINATION - APRIL 2021
 SEMESTER -6: MATHEMATICS (CORE COURSE)
 COURSE: 15U6CRMAT12: LINEAR ALGEBRA AND METRIC SPACES

(Common for Regular 2018 admission \& Improvement 2017/Supplementary 2017/2016 /2015 admissions)
Time: Three Hours
Max Marks: 75
PART A

Answer all questions. Each question carries 1 mark

1. Define linear independence and linear dependence of a vector space.
2. Show that subset of a vector space consisting of the single vector zero is linearly dependent?
3. Define basis of a vector space.
4. If $L: R^{n} \rightarrow R^{m}$ is defined as $L(u)=\mathrm{Au}$ for an $\mathrm{m} \times \mathrm{n}$ matrix A then show that L is linear.
5. Define kernel of a linear transformation with an example.
6. Define nullity and rank of a linear transformation.
7. Define metric on a non-empty set X and write an example for that.
8. Define open set and closed set in a metric space.
9. "A cauchy sequence is not necessarily convergent". Clarify the statement with an example.
10. Define Uniformly continuous function. Give an example of a function which is continuous but not uniformly continuous.

PART B

Answer any Eight questions. Each question carries $\mathbf{2}$ marks

11. Determine whether $u=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$ is a linear combination of $v_{1}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right], v_{2}=\left[\begin{array}{lll}2 & 4 & 0\end{array}\right]$ and $v_{3}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right] ?$
12. Determine whether the set $\left\{\left[\begin{array}{lll}1 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 1\end{array}\right],\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]\right\}$ form a basis for R^{3} ?
13. Determine the row rank of $\mathrm{A}=\left[\begin{array}{ccc}1 & 3 & 4 \\ 2 & -1 & 1 \\ 3 & 2 & 5 \\ 5 & 15 & 20\end{array}\right]$.
14. Determine whether the transformation T is linear if $T: R^{2} \rightarrow R^{2}$ is defined by $T[\mathrm{ab}]=[\mathrm{a}-\mathrm{b}]$ all real numbers a and b.
15. A Linear transformation $T: R^{2} \rightarrow R^{2}$ has the property that $T\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}5 \\ 6\end{array}\right]$ and $T\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{l}7 \\ 8\end{array}\right]$. Determine $T v$ for any vector $v \in R^{2}$.
16. Show that image of a linear transformation $T: V \rightarrow W$ is a subspace of W.
17. Prove that Cantor set is closed.
18. Let \mathbf{X} be a complete metric space and \mathbf{Y} be a subspace of \mathbf{X}. Prove that \mathbf{Y} is complete iff it is closed.
19. Show that a Cauchy sequence is convergent iff it has a convergent sub sequence.
20. Let \mathbf{X} be a metric space. If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences in \mathbf{X} such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ then show that $d\left(x_{n}, y_{n}\right) \rightarrow d(x, y)$.

PART C

Answer any Five questions. Each question carries 5 marks

21. Prove that If $S=\left\{v_{1}, v_{2}, \cdots \ldots \ldots, v_{n}\right\}$ is a basis for a vector space \mathbf{V} then any set containing more than n vectors is linearly dependent.
22. Find a basis for the span of the vectors in $\left\{t^{3}+3 t^{2}, 2 t^{3}+2 t-2, t^{3}-6 t^{2}+3 t-3,3 t^{2}-t+1\right\}$.
23. Find the matrix representation for the linear transformation $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ defined by

$$
\begin{aligned}
& T\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{a}+2 \mathrm{~b}+3 \mathrm{c} & 2 \mathrm{~b}-3 \mathrm{c}+4 \mathrm{~d} \\
3 \mathrm{a}-4 \mathrm{~b}-5 \mathrm{~d} & 0
\end{array}\right] \text { with respect to the standard basis } \\
& B=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
\end{aligned}
$$

24. Identify the kernel and the image of the linear transformation $T: P^{2} \rightarrow M_{2 \times 2}$ defined by $T\left(\mathrm{at}^{2}+b t+c\right)=\left[\begin{array}{cc}\mathrm{a} & 2 \mathrm{~b} \\ 0 & \mathrm{a}\end{array}\right]$ for all real numbers a, b and c .
25. Let \mathbf{X} be a metric space with metric \mathbf{d}. Show that d_{1} defined by $d_{1}(x, y)=\frac{d(x, y)}{1+d(x, y)}$ is a metric on \mathbf{X}.
26. Let \mathbf{X} be a metric space. Then prove that a subset \mathbf{G} of \mathbf{X} is open iff it is a union of open spheres.
27. Let \boldsymbol{X} be a complete metric space and let \boldsymbol{Y} be a subspace of \boldsymbol{X}. Prove that \boldsymbol{Y} is complete if and only if \boldsymbol{Y} is closed.

PART D

Answer any Two questions. Each question carries 12 marks

28. (a) Determine whether $S=\left\{\left.\left[\begin{array}{lll}x & y & z\end{array}\right] \in R^{3} \right\rvert\, y=0\right\}$ is a vector space under regular addition and scalar multiplication.
(b) Prove that additive inverse of any vector v in a vector space V is unique?
29. Let \mathbf{T} be a linear transformation from an n-dimentional vector space \mathbf{V} into \mathbf{W} and let $\left\{v_{1}, v_{2}, \ldots \ldots \ldots . . v_{k}\right\}$ be a basis for the kernel of T . If this basis is extended to a basis $\left\{v_{1}, v_{2}, \ldots \ldots \ldots ., v_{k}, v_{k+1}, \ldots \ldots \ldots ., v_{n}\right\}$ for V , then prove that $\left\{T\left(v_{k+1}\right), T\left(v_{k+2}\right), \ldots \ldots \ldots, T\left(v_{n}\right)\right\}$ is a basis for the image of T .
30. Let X be metric space then prove the following: (a) the empty set Φ and the full space X are closed Sets (b) a subset F of X is closed iff its complement F^{\prime} is open (c) each closed sphere is a closed set.
31. (a) State and prove Cantor's Intersection Theorem
(b) Let X be a metric space, Y be a complete metric space and A a dense subspace of X . If f is uniformly continuous mapping of A into Y then prove that f can be extended uniquely to uniformly continuous mapping g of X into Y.

21U642

