\qquad

B. Sc. DEGREE END SEMESTER EXAMINATION - APRIL 2021
 SEMESTER -6: MATHEMATICS (CORE COURSE) COURSE: 15U6CRMAT11: DISCRETE MATHEMATICS

(Common for Regular 2018 admission \& Improvement 2017/Supplementary 2017/2016 /2015 admissions)
Time: Three Hours
Max Marks: 75

PART A

Answer all questions. Each question carries 1 mark.

1. If the Complete graph $K n$ has 15 edges find n.
2. Define underlying simple graph of a graph G .
3. State Cayley's theorem.
4. Draw a Hamiltonian graph which is not Euler.
5. State Dirac's Theorem.
6. Draw a graph and mark a maximum Matching in it.
7. Distinguish between enciphering and deciphering.
8. Give an example of a super increasing sequence.
9. Give an example of a Chain.
10. State Duality principle.

PART B

Answer any eight questions. Each question carries $\mathbf{2}$ mark.

11. If G is a k regular graph where k is an odd number then prove that the number of edges in G is a multiple of k.
12. Write the incidence matrix of $K_{1,1}$.
13. Prove that any tree with atleast two vertices is a bipartite graph.
14. Define maximal non Hamiltonian graph. Give an example.
15. Define closure of a simple graph G.
16. Distinguish between perfect matching and maximum matching in a graph.
17. Distinguish between monoalphabetic cipher and polyalphabetic cipher.
18. Solve the super increasing Knapsack Problem $51=3 x_{1}+5 x_{2}+9 x_{3}+18 x_{4}+37 x_{5}$.
19. Distinguish between greatest element and maximal element of a poset.
20. Show by an example that Union of two sublattices may not be a sublattice. $\quad(2 \times 8=16)$

PART C

Answer any five questions. Each question carries 5 mark

21. Prove that a tree with n vertices has precisely $n-1$ edges.
22. If G is an acyclic graph with n vertices and k connected components, then prove that G has n - k edges.
23. If for each pair of distinct vertices u and v of a simple graph g, there are two internally disjoint $u-v$ paths in G, then prove that G is 2 - connected.
24. If G is a graph in which degree of every vertex is atleast two, then prove that G contains a cycle.
25. Prove that if a matching M in a graph G is maximum, then G has no M augmenting Path.
26. Decipher the message 'BBOT XWBZ AWUVGK' which was produced by the autokey cipher with seed RX.
27. Prove that a sublattice S of a lattice L is a convex sublattice if and only if $\forall a, b \in S(a \leq b),[a, b]$ $\subseteq \mathrm{S}$.
$(5 \times 5=25)$

PART D

Answer any two questions. Each question carries 12 mark.
28. If e is an edge of a graph G and if $\mathrm{G}-\mathrm{e}$ is the subgraph obtained by deleting e from G then Prove that $\omega(\mathrm{G}) \leq \omega(\mathrm{G}-\mathrm{e}) \leq \omega(\mathrm{G})+1$.
29. Prove that a connected graph G is Euler if and only if the degree of every vertex is even.
30. A user of the Knapsack Cryptosystem has a private key consisting of the super increasing sequence $\quad 2,3,7,13,27$ the modulus $\mathrm{m}=60$ and multiplier $\mathrm{a}=7$.
(a) Find the users listed public key.
(b) With the aid of the public key encrypt the message 'SEND MONEY'
31. (a) Prove that product of two lattices is a lattice.
(c) Prove that a finite lattice has the least and greatest element.
$(12 \times 2=24)$

