\qquad

B. Sc DEGREE END SEMESTER EXAMINATION - OCT. 2020 : JANUARY 2021 SEMESTER 3 : MATHEMATICS FOR B Sc COMPUTER APPLICATIONS COURSE : 19U3CRCMT3 : CALCULUS
 (For Regular - 2019 Admission)

Time : Three Hours
Max. Marks: 75

PART A

Answer any 10 (2 marks each)

1. Find the radius of curvature of the curve $y=3 x^{2}+4 x$ at the point $(1,7)$.
2. Find the $n^{\text {th }}$ derivative of $\cos ^{3} x$.
3. Find the points of inflection of the curve $y=3 x^{4}-4 x^{3}+1$.
4. Find f_{x}, f_{y} and f_{z} if $f(x, y, z)=e^{-\left(x^{2}+y^{2}+z^{2}\right)}$.
5. Use chain rule to
find $\frac{\partial w}{\partial t}$ at $t=0$, where $w=x^{2}+y^{2}$ along the path $x=\cos t+\sin t, y=\cos t-\sin t$.
6. If $w=x^{2}+y-z+\sin t$ and $x+y=t$, find $\left(\frac{\partial w}{\partial x}\right)_{y, z}$.
7. The region between the curve $\mathrm{y}=2 \sqrt{x}, 0 \leq x \leq 2$ and the x -axis is revolved about the x -axis to generate a solid. Find its volume using Disk method.
8. The solid lies between the planes perpendicular to the y-axis at $y=0$ and $y=2$.The cross-sections perpendicular to the y-axis are circular disks with diameters running from the y-axis to the parabola $x=\sqrt{5} y^{2}$. Find the volume of the solid.
9. Evaluate the integral $\int_{0}^{\pi / 2} \frac{3 \sin x \cos x}{\sqrt{1+3 \sin ^{2} x}} d x$.
10. If $f(x, y)=x^{2} y-2 x y$ and $R: 0 \leq x \leq 3,-2 \leq y \leq 0$, then evaluate $\iint_{R} f(x, y) d A$.
11. Evaluate $\iint_{R} \frac{\sin x}{x} d A$, where R is the triangle in the xy - plane bounded by the x -axis, the line $\mathrm{y}=\mathrm{x}$ and the line $x=1$.
12. Evaluate $\int_{0}^{1} \int_{1}^{2}\left(x^{2}+y^{2}\right) d x d y$.

PART B

Answer any 5 (5 marks each)

13. Find the $n^{\text {th }}$ derivative of $e^{a x} \cos ^{2} x \sin x$.
14. Find the points of inflection and the inflectional tangents to the curve $y=\frac{x^{3}-x}{3 x^{2}+1}$.
15. Find all local maxima, local minima and saddle points of the
function $f(x, y)=x^{2}+x y+y^{2}+3 x-3 y+4$.
16. Find positive numbers x, y, z such that $x+y+z=20$ and $x y z^{2}$ is a maximum.
17. Using disk method, find the volume of the solid generated by revolving the region bounded by the curve $y=x^{2}$ and the lines $y=0, x=2$ about the x-axis.
18. The region enclosed by the x-axis and the parabola $y=3 x-x^{2}$ is revolved about the vertical line $x=-1$ to generate the solid. Find the volume of the solid using shell method.
19. a) Solve the system $u=x+2 y$ and $v=x-y$ for x and y in terms of u and v. Then find the Jacobian J u, v).
b) Find the image under transformation $u=x+2 y$ and $v=x-y$ of the triangular region in the $x y$-plane bounded by the lines $y=0, y=x$ and $x+2 y=2$. Sketch the transformed region in the uv-plane.
20. Find the area enclosed by the cardioid $r=a(1+\cos \theta)$.

PART C

Answer any 3 (10 marks each)

21.

If $y=\sin \left(m \sin ^{-1} x\right)$, show that
$y_{n}(0)=\left\{\begin{array}{l}0, \\ m\left(1-m^{2}\right)\left(3^{2}-m^{2}\right) \ldots \ldots \ldots .\left[(n-2)^{2}-m^{2}\right], \quad \text { is even } n \text { is odd }\end{array}\right.$
22. Using Legrange multipliers, find the maximum and minimum values of $f(x, y, z)=x-2 y+5 z$ on the sphere $x^{2}+y^{2}+z^{2}=30$.
23. a) Find the area of the surface generated by revolving the curve $y=\frac{x^{3}}{9}, 0 \leq x \leq 2$, about the x-axis.
b) Find the volume of the solid generated by revolving the region bounded by the parabola $y=x^{2}$ and the line $\mathrm{y}=1$ about the line $\mathrm{y}=2$.
24. Find the volume of the region D enclosed by the surfaces $z=x^{2}+3 y^{2}$ and $z=8-x^{2}-y^{2}$.

