# B. Sc DEGREE END SEMESTER EXAMINATION - OCT. 2020 : JANUARY 2021 <br> SEMESTER 3 : MATHEMATICS <br> COURSE : 19U3CRMAT3 : VECTOR CALCULUS, THEORY OF EQUATIONS AND MATRICES 

(For Regular - 2019 Admission)
Time : Three Hours
Max. Marks: 75

## PART A

## Answer any 10 (2 marks each)

1. Show that $\nabla(\bar{A} \times \bar{B})=(\nabla \cdot \bar{B}) \bar{A}-(\nabla \cdot \bar{A}) \bar{B}+(\bar{B} \cdot \nabla) \bar{A}-(\bar{A} \cdot \nabla) \bar{B}$.
2. Give the physical interpretation of divergence.
3. If $\bar{r} x i+y j+z k$, show that $i) g r a d r=\frac{\bar{r}}{r}$

$$
\begin{aligned}
& i i) \operatorname{grad}\left(\frac{1}{r}\right)=\frac{\overline{-r}}{r^{3}} \\
& i i i) \nabla r^{n}=n r^{n-2} \bar{r}
\end{aligned}
$$

4. Use divergence theorem to show that $\oint_{s} \nabla r^{2} d \bar{s}=6 v$ where s is any closed surface enclosing a volume V .
5. State Stoke's theorem.
6. State Gauss divergence theorem and prove that for any closed surface $s, \iint_{s} \operatorname{curl} \bar{F} \cdot \widehat{n} d s=0$.
7. Show that any real polynomial equation of odd degree has at least one real root.
8. If $\alpha, \beta, \gamma$ are the roots of the equation $x^{3}-p x^{2}+q x-r=0$, find the value of $\sum \alpha^{2}$.
9. State Descarte's rule of signs and apply it to prove that the equation $x^{3}+2 x+3=0$ has one negative and two imaginary roots.
10. Explain the term normal form with examples.
11. Define Eigen value and eigen vector.
12. Evaluate the eigen values of $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$.

## PART B

## Answer any 5 (5 marks each)

13. Evaluate $\operatorname{grad} \phi$ when $\phi=3 x^{2} y-y^{3} z^{2}$ at the point $(1,-2,-1)$
14. Derive the expression $\nabla\left(\frac{\phi_{1}}{\phi_{2}}\right)=\frac{\phi_{2} \nabla \phi_{1}-\phi_{1} \nabla \phi_{2}}{\phi_{2}^{2}}$.
15. Evaluate the line integrals $\int\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y$ where C is the square bounded by the lines $x= \pm 1$ and $y= \pm 1$.
16. Evaluate $\int_{c}\left(2 x^{2} y+y+z^{2}\right) i+2\left(1+y z^{2}\right) j+\left(2 z+3 y^{2} z^{2}\right) k$. $d \bar{r}$ along the curve $c: y^{2}+z^{2}=a^{2}, x=0$.
17. Solve $x^{3}-9 x+28=0$ using Cardan's method.
18. Solve the equation $4 x^{4}-8 x^{3}+7 x^{2}+2 x-2=0$ given that one root of the equation is $1+i$.
19. Test for consistancy and if consistant solve
$x+2 y-z=3,3 x-y+2 z=1,2 x-2 y+3 z=2, x-y+z=-1$
20. 

Use Gauss Jordan method to find the inverse of $\left[\begin{array}{cccc}2 & 1 & -1 & 2 \\ 1 & 3 & 2 & -3 \\ -1 & 2 & 1 & -1 \\ 2 & -3 & -1 & 4\end{array}\right]$.

## PART C

Answer any 3 (10 marks each)
21. a) Prove that $\nabla^{2}\left(r^{n}\right)=n(n+1) r^{n-2}$
b)If $\bar{v}=3 x^{2} y^{2} z^{4} i+2 x^{3} y z^{4} j+4 x^{3} y^{2} z^{3} k$ show that $\bar{v}$ is a conservative field and find its scalar potential.
22. Verify Green's theorem in the plane for $\oint_{c}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where c is the boundary of the region bounded by $(a) y=\sqrt{x}, y=x^{2}$

$$
\text { (b) } x=0, y=o, x+y=1
$$

23. (a)Show that if $\alpha$ is an $r$-multiple root of $f(x)=0$, then $\alpha$ is an $r-1$ multiple root of $f^{\prime}(x)=0$
(b)Solve $x^{5}-x^{3}+4 x^{2}-3 x+2=0$ given that it has multiple roots.
24. Investigate the values of $\lambda$ and $\mu$ so that the equation $2 x+3 y+5 z=9,7 x+3 y-2 z=8$, $2 x+3 y+\lambda z=\mu$ have
1) no solution 2)a unique solution 3)an infinite number of solution.
