\qquad

B. Sc. DEGREE END SEMESTER EXAMINATION - APRIL 2021
 SEMESTER -6: MATHEMATICS (CORE COURSE)
 COURSE: 15U6CRMAT10: COMPLEX ANALYSIS

(Common for Regular 2018 admission \& Improvement 2017/Supplementary 2017/2016 /2015/2014 admissions)
Time: Three Hours
Max Marks: 75

PART A

Answer All questions. Each question carries 1 mark.

1. Define continuity of a function $f(z)$ at z_{0}.
2. Write the function $f(z)=z^{2}$ in the form $u(x, y)+i v(x, y)$.
3. Find the principal value of $(-i)^{i}$.
4. State Liouville's theorem.
5. Apply Cauchy-Goursat theorem to show that $\int_{C} \operatorname{tanz} d z=0$ where C is the unit circle $|z|=1$.
6. Find the nature of the singularity of $f(z)=\frac{1-\cos z}{z^{2}}$.
7. Evaluate $\int_{1}^{2}(1-i t)^{2} d t$.
8. Write the Maclaurin series expansion of $f(z)=\frac{1}{2-z}$.
9. Find the residue at $z=0$ of $f(z)=\frac{1}{z+z^{2}}$.
10. Find all isolated singularities of $f(z)=\frac{z+1}{z^{3}\left(z^{2}+1\right)}$.

PART B

Answer any Eight questions. Each question carries 2 marks.

11. Verify Cauchy Riemann equation for the function $f(z)=z^{3}$.
12. Show that $f^{\prime}(z)$ does not exist at any point if $(z)=\bar{z}$.
13. Show that $\log (-1+i)^{2} \neq 2 \log (-1+i)$.
14. Evaluate $\int_{C} \frac{z^{2}+1}{z^{2}-1} d z$ if C is the circle of unit radius with centre at $z=-1$.
15. Evaluate $\int_{C} z^{2} d z$ where C is the straight line segment joining the origin to the point $2+i$.
16. Evaluate $\int_{C} \frac{z+2}{z} d z$ where C is the semi circle $z=2 e^{i \theta}, \pi \leq \theta \leq 2 \pi$.
17. State Laurent's theorem.
18. Represent the function $f(z)=\frac{z+1}{z-1}$ by its Maclaurin's series and state where the representation is valid.
19. What is the nature of the singularity of the function $f(z)=\sin \left(\frac{1}{1-z}\right)$ at $z=1$.
20. Find the residue of $f(z)=\tan z$ at $z=\frac{\pi}{2}$.

PART C

Answer any Five questions. Each question carries 5 marks.

21. Show that $u(x, y)=2 x(1-y)$ is harmonic and find its harmonic conjugate.
22. Show that an analytic function $f(z)=u+i v$ is constant if (i) its real part is constant (ii) its modulus is constant.
23. State and prove Cauchy's integral formula.
24. Let C be the arc of the circle $|z|=2$ that lies in the first quadrant. Without evaluating the integral, show that $\left|\int_{C} \frac{d z}{z^{2}+1}\right| \leq \frac{\pi}{3}$.
25. Expand $f(z)=\frac{z}{(z-1)(2-z)}$ in a Laurent's series valid for (i) $|z|<1$ (ii) $1<|z|<2$ (iii) $|z|>2$.
26. State and prove Cauchy's residue theorem.
27. Evaluate $\int_{C} \frac{d z}{z^{3}(z+4)}$ where $C:|z|=2$.

PART D

Answer any Two questions. Each question carries 12 marks.
28. State and prove the necessary and sufficient condition for $f(z)=u+i v$ is analytic.
29. (i) State and prove fundamental theorem of algebra.
(ii) State and prove maximum modulus principle.
30. State and prove Taylor's theorem.
31. Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{a+b \cos \theta}, a>b>0$.

