B. Sc. DEGREE END SEMESTER EXAMINATION - APRIL 2021

SEMESTER -6: MATHEMATICS (CORE COURSE)

COURSE: 15U6CRMAT10: COMPLEX ANALYSIS

(Common for Regular 2018 admission & Improvement 2017/Supplementary 2017/2016 /2015/2014 admissions)

Time: Three Hours Max Marks: 75

PART A

Answer All questions. Each question carries 1 mark.

- 1. Define continuity of a function f(z) at z_0 .
- 2. Write the function $f(z) = z^2$ in the form u(x, y) + i v(x, y).
- 3. Find the principal value of $(-i)^i$.
- 4. State Liouville's theorem.
- 5. Apply Cauchy-Goursat theorem to show that $\int_C tanz \, dz = 0$ where C is the unit circle |z| = 1.
- 6. Find the nature of the singularity of $f(z) = \frac{1-\cos z}{z^2}$.
- 7. Evaluate $\int_{1}^{2} (1 it)^{2} dt$.
- 8. Write the Maclaurin series expansion of $f(z) = \frac{1}{2-z}$.
- 9. Find the residue at z = 0 of $f(z) = \frac{1}{z+z^2}$.
- 10. Find all isolated singularities of $f(z) = \frac{z+1}{z^3(z^2+1)}$.

 $(1 \times 10 = 10)$

PART B

Answer any Eight questions. Each question carries 2 marks.

- 11. Verify Cauchy Riemann equation for the function $f(z) = z^3$.
- 12. Show that f'(z) does not exist at any point if $(z) = \bar{z}$.
- 13. Show that $Log(-1+i)^2 \neq 2 Log(-1+i)$.
- 14. Evaluate $\int_C \frac{z^2+1}{z^2-1} dz$ if C is the circle of unit radius with centre at z=-1.
- 15. Evaluate $\int_C z^2 dz$ where C is the straight line segment joining the origin to the point 2+i.
- 16. Evaluate $\int_C \frac{z+2}{z} dz$ where C is the semi circle $z=2e^{i\theta}$, $\pi \leq \theta \leq 2\pi$.
- 17. State Laurent's theorem.
- 18. Represent the function $f(z) = \frac{z+1}{z-1}$ by its Maclaurin's series and state where the representation is valid.
- 19. What is the nature of the singularity of the function $f(z) = sin\left(\frac{1}{1-z}\right)$ at z = 1.
- 20. Find the residue of f(z) = tanz at $z = \frac{\pi}{2}$. (2 x 8 = 16)

PART C

Answer any Five questions. Each question carries 5 marks.

- 21. Show that u(x,y) = 2x(1-y) is harmonic and find its harmonic conjugate.
- 22. Show that an analytic function f(z) = u + iv is constant if (i) its real part is constant (ii) its modulus is constant.
- 23. State and prove Cauchy's integral formula.
- 24. Let C be the arc of the circle |z|=2 that lies in the first quadrant. Without evaluating the integral, show that $\left|\int_C \frac{dz}{z^2+1}\right| \leq \frac{\pi}{3}$.
- 25. Expand $f(z) = \frac{z}{(z-1)(2-z)}$ in a Laurent's series valid for (i) |z| < 1 (ii) 1 < |z| < 2 (iii) |z| > 2.
- 26. State and prove Cauchy's residue theorem.

27. Evaluate
$$\int_C \frac{dz}{z^3(z+4)}$$
 where $C: |z| = 2$. (5 x 5 = 25)

PART D

Answer any Two questions. Each question carries 12 marks.

- 28. State and prove the necessary and sufficient condition for f(z) = u + i v is analytic.
- 29. (i) State and prove fundamental theorem of algebra.
 - (ii) State and prove maximum modulus principle.
- 30. State and prove Taylor's theorem.

31. Evaluate
$$\int_0^{2\pi} \frac{d\theta}{a + b \cos \theta}$$
, $a > b > 0$. (12 x 2 = 24)
