\qquad

B. Sc. DEGREE END SEMESTER EXAMINATION - APRIL 2021
 SEMESTER -6: PHYSICS (CORE COURSE)
 COURSE: 15U6CRPHY09: COMPUTATIONAL PHYSICS

(Common for Regular 2018 Admission \& Improvement 2017/Supplementary 2017/2016/2015/2014 Admissions) Time: Three Hours

Max Marks: 60
PART A (Very short answer questions)

Answer all questions, each question carries 1 Mark

1. The fixed set of instructions in the form of binary patterns for a microprocessor is called-----
2. What is the significance of Timing diagram?
3. Draw the bit positions of various flags in the flag register of 8085.
4. Explain the operation carried out by 8085μ p on the instruction ADD B
5. Write a C++ program to find the remainder of two numbers.
6. What are the advantages of using Object Oriented languages?
7. What are manipulators in $\mathrm{C}++$?
8. Differentiate between the truncation error and rounding off error.
9. Simpson's $1 / 3$ rule is exact up to \qquad order polynomials.
10. For integration using trapezoidal rule, if the interval h is halved by what factor the truncation error will be reduced?

PART B (Short answer)
Answer any seven questions each question carries 2 Marks
11. Explain the advantages of an assembly language over high level language.
12. Explain stack pointer in a microprocessor.
13. Explain the syntax of switch statement in $\mathrm{C}++$.
14. With a suitable example, explain the use of functions in $\mathrm{C}++$.
15. What are secondary memory devices? Give two examples.
16. What is an exit-controlled loop in C++?
17. Why Simpson's $1 / 3$ rule is better than trapezoidal rule for numerical integration?
18. Explain bisection method.
19. Write the Algorithm for false position method.

PART C (Problem/Derivations)

Answer any Four question, each question carries 4 Marks
20. Write an assembly language programme for subtracting two eight-bit numbers and store the result in another memory location using direct addressing.
21. What are different types of buses in a microprocessor unit? Explain.
22. Write a C++ program to check whether the given number is prime or not.
23. Write short notes on various logical and branching operations of 8085.
24. Solve the differential equation $\frac{d y}{d x}+x y=0, y(0)=1$, from $x=0$ to 1 , using Euler's method.
25. Find the real root of the equation $x^{3}-4 x-5=0$, using false position method.

PART D (Long answer questions)

Answer any Two question, each question carries 10 Marks

26. Draw the pin-out diagram and explain the functions of various pins in an 8085 microprocessor.
27. Explain the syntax and working of various loops in C++. Also give examples.
28. Explain Runge-Kutta fourth order formula and write the Algorithm for computer implementation.
29. Explain Simpson's $1 / 3$ method. Evaluate $\int_{0}^{5} \frac{1}{1+x} d x$, using Simpson's $1 / 3$ method.
$(10 \times 2=20)$
