\qquad

B.Sc. DEGREE END SEMESTER EXAMINATION - APRIL 2021

SEMESTER -6: MATHEMATICS (COMMON FOR MATHEMATICS/ COMPUTER APPLICATIONS) COURSE: 15U6CRMAT9-15U6CRCMT7: REAL ANALYSIS
(Common for Regular 2018 Admission \& Improvement 2017/Supplementary 2017/2016/2015/2014 Admissions) Time: Three Hours

Max Marks: 75

PART A

Answer All Questions. Each Question has 1 Mark.

1. State Raabe's test for checking convergence of an infinite series.
2. Give an example of a diverging series $\sum U_{n}$ with $\lim _{n \rightarrow \infty}\left(\frac{u_{n}}{u_{n+1}}\right)=1$
3. Define conditional convergence of an infinite series.
4. Give an example of a function which is discontinuous at every real numbers.
5. If f and g are functions continuous at a point c, then prove that $(f+g)$ is continuous at c.
6. Is the function $f(x)=2 x+3$ is integrable on $[2,3]$? Justify
7. Define lower Darboux sum of a bounded function f over $[a, b]$.
8. If P^{*} is a refinement of partition P, then show that $U\left(P^{*}, f\right) \leq U(P, f)$.
9. Define pointwise convergence of a sequence of functions.
10. Show that $\sum \frac{x^{n} a_{n}}{1+x^{n}}$ converges uniformly in [0, 1] if $\sum a_{n}$ converges. $(1 \times 10=10)$

PART B

Answer any Eight. Each Question has 2 Marks

11. Investigate the behaviour of the series whose $n^{\text {th }}$ term is $\cos \left(1 / n^{3}\right)$.
12. Let $\sum u_{n}$ be a positive term series such that $\lim _{n \rightarrow \infty} n\left(\frac{u_{n}}{u_{n+1}}-1\right)=l$, then prove that the series converges if $l>1$.
13. Prove or disprove : Every absolutely convergent series is convergent.
14. Show that $f(x)=\sin x$ is uniformly continuous on $[0, \infty)$
15. Discuss the continuity of the function $f(x)=[x]$ where $[x]$ is the greatest integer less than or equal to x
16. Show that a constant function k is integrable and $\int_{a}^{b} k d x=k(b-a)$.
17. If f_{1} and f_{2} are bounded and integrable functions on $[a, b]$, then show that their sum $f=f_{1}+f_{2}$ is also integrable on [a,b].
18. If a function f is continuous on $[a, b]$, then show that it is integrable on $[a, b]$.
19. State and prove Abel's test for uniform convergence of a series of functions.
20. Show that the sequence of functions $\left\{f_{n}(x)\right\}$ where $f_{n}(x)=n x e^{-n x^{2}}, \quad x \geq 0$ is not uniformly convergent on $[0, k], k>0$.

PART C

Answer any Five. Each Question has 5 Marks.
21. Check the convergence of the series whose $n^{\text {th }}$ term is given by $\frac{3.6 .9 \ldots 3 n}{7.10 .13 \ldots(3 n+4)} x^{n}$ where $x>0$
22. State and prove Cauchy's general principle of convergence for infinite series
23. If a function f is continuous at an interior point c of $[a, b]$ and $f(c) \neq 0$ then prove the existence of a neighbourhood of c where $f(x)$ has the same sign as $f(c)$.
24. Prove that a function which is continuous on a closed interval is also uniformly continuous on that interval.
25. State and prove second fundamental theorem of integral calculus
26. Prove that a bounded function having a finite number of points of discontinuity on $[a, b]$ is integrable on $[a, b]$.
27. State and prove Weierstrass M - test for uniform convergence of a series of functions.

$$
(5 \times 5=25)
$$

PART D

Answer any Two. Each Question has 12 Marks.

28. Prove that the series $\sum \frac{1}{n^{p}}$ is convergent if and only if $p>1$
29. (a) If a function f is continuous on $[a, b]$ and $f(a) . f(b)<0$, then prove that there exist at least one point c in (a, b) such that $\mathrm{f}(\mathrm{c})=0$.
(b) Show that the function $\mathrm{f}(\mathrm{x})$ defined on R by $f(x)=\left\{\begin{array}{cc}\mathrm{x}, & \text { if } x \text { is irrational } \\ -\mathrm{x}, & \text { if } \mathrm{x} \text { is rational }\end{array}\right.$ is continuous only at $x=0$.
30. (a) State and prove a necessary and sufficient condition for the integrability of a bounded function on a closed interval.
(b) State and prove fundamental theorem of integral calculus.
31. (a) State and prove Cauchy's criterion for uniform convergence of a sequence of functions
(b) Show that the sequence of functions $\left\{f_{n}\right\}$ where $f_{n}(x)=\frac{x}{1+n x^{2}}$, x being real converges uniformly on any closed interval.
$(12 \times 2=24)$
