B Sc DEGREE END SEMESTER EXAMINATION - JULY 2021

SEMESTER 2 : COMPLEMENTARY MATHEMATICS FOR B Sc CHEMISTRY /PHYSICS

COURSE : 19U2CPMAT2 : CALCULUS -2 AND NUMERICAL ANALYSIS

(For Regular - 2020 Admission and Supplementary - 2019 Admission)

Time : Three Hours

Max. Marks: 75

PART A Answer any 10 (2 marks each)

- 1. If $\overrightarrow{r}=xi+yj+zk$, show that $abla r^n=n^{n-2}\overrightarrow{r}$
- 2. If $\overrightarrow{r}=xi+yj+zk$, show that $abla\Bigl(\overrightarrow{a}.\ \overrightarrow{r}\Bigr)=\overrightarrow{a}$, where \overrightarrow{a} is a constant vector
- 3. Show that $abla imes \left(\overrightarrow{A} + \overrightarrow{B} \right) =
 abla imes \overrightarrow{A} +
 abla imes \overrightarrow{B}$

4. If
$$\overrightarrow{r} = xi + yj + zk$$
, show that $grad\left(rac{1}{r}
ight) = rac{-\overrightarrow{r}}{r^3}$

- 5. For any closed surface S, prove that $\iint_S curl \stackrel{\rightarrow}{F} . \hat{n} \, dS = 0.$
- 6. Evaluate $\Delta tan^{-1}ax$ with interval of difference as unity.
- 7. Prove that $\,
 abla = 1 E^{-1}$
- 8. Define Simpson's one third rule.
- 9. Define Simpson's three eighth rule.
- 10. Given first two approximations a and b , what is the next approximation using bisection method?
- 11. Define the general form of nth root in Newton's method.
- 12. Write the condition for convergence of Newton-Raphson method.

(2 x 10 = 20)

PART B Answer any 5 (5 marks each)

- 13. Find the angle between the surfaces $x^2+y^2+z^2=9$ and $z=x^2+y^2-3$ at the point (2,-1,2)
- 14. Explain the physical interpretation of divergence
- ^{15.} Use Green's theorem in the plane to evaluate the integral $\oint_C (2x^2 y^2) \, dx + (x^2 + y^2) \, dy$

where C is the boundary in the xy- plane of the area enclosed by the x- axis and the semicircle $x^2 + y^2 = 1$ in the upper half xy - plane.

- 16. If $\overrightarrow{A} = 2xz\hat{i} x\hat{j} + y^2\hat{k}$, evaluate $\iiint_V \overrightarrow{A} dV$, where V is the region bounded by the surface $x = 0, y = 0, x = 2, y = 6, z = x^2, z = 4$.
- 17. Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Simpson's three eighth rule with h = 1/6
- 18. Prove that $\Delta = \frac{1}{2} \quad 18.$
- 19. Find the real root of the equation $x^4 x 9 = 0$ by Newton-Raphson method correct to three place of decimal.
- 20. Find the real root of the equatioon $xe^x 3 = 0$ by Regula-Falssi method, correct to three decimal places.

(5 x 5 = 25)

PART C Answer any 3 (10 marks each)

- 21. a. Prove that the vector $f(r) \overrightarrow{r}$ is irrotational b. Prove that $abla^2 f(r) = f''(r) + rac{2}{r}f'(r)$
- ^{22.} Verify Stoke's theorem for $\overrightarrow{F} = (2x y)\hat{i} yz^2\hat{j} y^2z\hat{k}$ over the upper half surface of $x^2 + y^2 + z^2 = 1$, bounded by its projection on the xy- plane.
- 23. Using Newton's interpolation formula and the given table of values find the value of y at x = 1.4.

x	1.1	1.3	1.5	1.7	1.9
У	0.21	0.69	1.25	1.89	2.61

24. Using Horner's method find the root of $x^3 + 9x^2 - 18 = 0$, correct to two decimal places. (10 x 3 = 30)