\qquad

B Sc DEGREE END SEMESTER EXAMINATION - JULY 2021

SEMESTER 2 : COMPLEMENTARY MATHEMATICS FOR B Sc CHEMISTRY /PHYSICS

 COURSE : 19U2CPMAT2 : CALCULUS -2 AND NUMERICAL ANALYSIS(For Regular - 2020 Admission and Supplementary - 2019 Admission)
Time : Three Hours
Max. Marks: 75
PART A
Answer any 10 (2 marks each)

1. If $\vec{r}=x i+y j+z k$, show that $\nabla r^{n}=n^{n-2} \vec{r}$
2. If $\vec{r}=x i+y j+z k$, show that $\nabla(\vec{a} \cdot \vec{r})=\vec{a}$, where \vec{a} is a constant vector
3. Show that $\nabla \times(\vec{A}+\vec{B})=\nabla \times \vec{A}+\nabla \times \vec{B}$
4. If $\vec{r}=x i+y j+z k$, show that $\operatorname{grad}\left(\frac{1}{r}\right)=\frac{-\vec{r}}{r^{3}}$
5. For any closed surface S, prove that $\iint_{S} \operatorname{curl} \vec{F} \cdot \hat{n} d S=0$.
6. Evaluate $\Delta \tan ^{-1} a x$ with interval of difference as unity.
7. Prove that $\nabla=1-E^{-1}$
8. Define Simpson's one third rule.
9. Define Simpson's three eighth rule.
10. Given first two approximations a and b , what is the next approximation using bisection method?
11. Define the general form of nth root in Newton's method.
12. Write the condition for convergence of Newton-Raphson method.

PART B

Answer any 5 (5 marks each)

13. Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at the point $(2,-1,2)$
14. Explain the physical interpretation of divergence
15. Use Green's theorem in the plane to evaluate the integral $\oint_{C}\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$ where C is the boundary in the $x y$-plane of the area enclosed by the x - axis and the semicircle $x^{2}+y^{2}=1$ in the upper half $x y$ - plane.
16. If $\vec{A}=2 x z \hat{i}-x \hat{j}+y^{2} \hat{k}$, evaluate $\iiint_{V} \vec{A} d V$, where V is the region bounded by the surface $x=0, y=0, x=2, y=6, z=x^{2}, z=4$.
17. Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ using Simpson's three - eighth rule with $\mathrm{h}=1 / 6$
18. Prove that $\$ \backslash$ Delta $=\backslash$ frac $\{1\}\{2\} \backslash$ delta ^ $2+\backslash$ delta \backslash sqrt $\{1+\backslash$ frac $\{1\}\{4\} \backslash$ delta ^ 2$\} \$$
19. Find the real root of the equation $x^{4}-x-9=0$ by Newton-Raphson method correct to three place of decimal.
20. Find the real root of the equatioon $x e^{x}-3=0$ by Regula-Falssi method, correct to three decimal places.

PART C

Answer any 3 (10 marks each)

21. a. Prove that the vector $f(r) \vec{r}$ is irrotational
b. Prove that $\nabla^{2} f(r)=f^{\prime \prime}(r)+\frac{2}{r} f^{\prime}(r)$
22. Verify Stoke's theorem for $\vec{F}=(2 x-y) \hat{i}-y z^{2} \hat{j}-y^{2} z \hat{k}$ over the upper half surface of $x^{2}+y^{2}+z^{2}=1$, bounded by its projection on the $x y$-plane.
23. Using Newton's interpolation formula and the given table of values find the value of y at $x=$ 1.4.

x	1.1	1.3	1.5	1.7	1.9
y	0.21	0.69	1.25	1.89	2.61

24. Using Horner's method find the root of $x^{3}+9 x^{2}-18=0$, correct to two decimal places.
($10 \times 3=30$)
