B. Sc. DEGREE END SEMESTER EXAMINATION - JULY 2021

SEMESTER 2 : COMPLEMENTARY STATISTICS FOR B Sc MATHEMATICS / COMPUTER APPLICATIONS

 COURSE : 19U2CPSTA02 / 19U2CRSTA02 : PROBABILITY AND STATISTICS(For Regular - 2020 Admission and Improvement / Supplementary - 2019 Admission)
Time : Three Hours
Max. Marks: 75

PART A
 Maximum marks for this section is $\mathbf{1 0}$

1. For any event A , Show that $0 \leq P(A) \leq 1$
2. State addition theorem for two events
3. State multiplicative law of probability
4. Who introduced classical defintion probability?
5. Examine the following function is a p.d.f
$=\frac{1}{4}$ for $x=1$
$f(x)=\frac{3}{2}$ for $x=2$
$=0$ otherwise
6.

Find $\quad P[4 x+5 \leq 6.3]$.if $\quad F(x)=\begin{gathered}0 \quad \text { if } x<0 \\ x \text { if } 0 \leq x \leq 1 \\ 1 \text { if } x \geq 1\end{gathered}$
7. The distribtution function of a random variable X is $F(x)$. If $F(3)=0$ and $F(7)=1$, find $F(2)$ and F(8)?
8. Define probability distribution function and distribution function of a pair of continuous type random variables (X, Y)
9. Find k, if $f(x, y)=k, 0<x<1,0<y<1$ is a joint probability density funtion.
10. Find the angle between the two regression line if the correlation coefficient $r=0$
11. The mean values of two variables X and Y are 5 and 8 respectively. If one of them regression lines between thm is $6 \mathrm{X}-2 \mathrm{Y}-\mathrm{k}=10$, then find k ?
12. What is the correlaton of the pairs of points $(2,5)$ and $(3,1)$?
$(1 \times 10=10)$

PART B

Maximum marks for this section is 15

13. From a pack of cards 13 cards are drawn. Find the probability that there are exactly 5 spades among the slelected cards.
14. Using frequency definiton of probability show that $P(A \cap B)=P(A)-P(B)$ if $B \subset A$
15. Distingh between p.d.f. and distribution function of a random variable. How are the two function related?
16. If $\mathrm{F}(\mathrm{x})=\mathrm{x}^{2}$ for $0<\mathrm{x}<1$ is the distribution function of a random variable x , find the distribution function of $Y=X+10$
17. The joint pdf of a random variable X and Y is $f(x, y)=e^{-(x+y)}$ if $x \geq 0, y \geq 0$ and $=0$ otherwise. Find the marginal p.d.f's
18. What are the important properties of the regresson coefficients?
19. What is rank correlation?

PART C

Maximum marks for this section is $\mathbf{2 0}$

20. Distinguish between mutually exclusive events and independent events. The odds in favour of an event A are 2:5. The odds against another event B are $4: 3$. If the events are disjoint, find the probability of happening of at least one of the events.
21. For any two events A and B prove that $P(A \cap B) \leq P(A) \leq P(A \cup B) \leq P(A)+P(B)$
22. The p.d.f. of a random variable is given by $f(x)=k x$, for $x=1,2,3,4$.

Find (i) k (ii) $P[1 \leq x \leq 3]$ (iii) $P[x \geq 2]$ (iv) $P[x<3]$
23. If $f(x, y)=k x^{2}(1-y)$ for $0<x<2,0<y<1$ is the joint p.d.f of (X,Y) find (i) k (ii) find the marginal distribution function of X and Y
24. Show that correlation coefficient lies between -1 and +1
25. Show that correlation coefficient is invariant under linear transformation

PART D

Maximum marks for this section is $\mathbf{3 0}$
26. (1) State and prove Baye's theorem (2) Explain conditional probability (3) Explain the terms ' a priori probabilities and posteriori probabilities
27. A continuous random variable X has the following density

$$
\text { function } f(x)=a x, \quad 0 \leq x \leq 1
$$

$$
\begin{aligned}
& =a, \quad 1 \leq x \leq 2 \\
& =-a x+3 a, 2 \leq x \leq 3 \\
& =0 \text { elsewhere }
\end{aligned}
$$

(1) Determine the constant a (2) Determine the distribution function (3) sketch the graphs of $\mathrm{f}(\mathrm{x})$ and $\mathrm{F}(\mathrm{x})$
28. Given $f(x, y)=k e^{-x-2 y} x>0, y>0$. Find (1) k (2) obtain the marginal distributions
29. Given the two regression lines $8 x-10 y+66=0$ and $40 x-18 y=214$ and variance of x is 9 . Find the mean of x, mean of y, the correlation coefficient between x and y, and variance of y
($10 \times 3=30$)

