\qquad

B. C. A. DEGREE END SEMESTER EXAMINATION - JULY 2021

SEMESTER - 2: COMPLEMENTARY MATHEMATICS FOR B Sc COMPUTER APPLICATION COURSE: 16U2CPCMT2: DISCRETE MATHEMATICS
(Common for Supplementary 2018 / 2017 / 2016 Admissions)
Time: Three Hours
Maximum Marks: 75
PART A
Answer all questions. Each question carries 1 mark

1. Find the dual of the following compound propositions.
$(p \wedge \neg q) \vee(q \wedge F)$
2. List the elements of R from $A=\{0,1,2,3,4\}$ to $B=\{0,1,2,3\}$ where $(a, b) \in R$ if $a+b=4$.
3. Define a finite set and an infinite set.
4. Define a path and the length of a path in a graph.
5. Write the negation of the preposition, $\mathrm{p}: 2+3>1$.
6. Let p be "Ravi is tall" and q be "Ravi is handsome". Write the following statement in symbolic form. "Ravi is short or not handsome".
7. Give an example of a relation that is reflexive and symmetric but not transitive.
8. How many numbers between 5000 and 10,000 can be formed from the digits $1,2,3,4,5,6,7,8,9$, each digit not appearing more than once in each number?
9. Determine the truth value of the following statement. "If Calcutta is in India, then $1+1=3$ ".
10. If there are 12 persons in a party, and if each two of them shake hands with each other, how many handshakes happen in the party?

PART B

Answer any eight questions. Each question carries 2 marks.

11. Let R be the relation on the set N of natural numbers defined by $R=\{(a, b): a+3 b=12$ where $a, b \varepsilon N\}$. Find the range of R ?
12. Explain Hamming code.
13. How many different words can be made out of the letters in the word ALLAHABAD?
14. Let $U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,3,4\}$ and $B=\{2,4,6,8\}$. Find $(A-B)^{\prime}$.
15. Represent Konigsberg Bridge problem by means of a graph.
16. Let A and B be two sets such that $n(A \cup B)=42, n(A)=20$ and $n(A \cap B)=4$. Find $n(\mathrm{~B})$.
17. Verify whether the following preposition is a tautology.
$(p \wedge q) \rightarrow p$.
18. Define binary tree with example.
19. In how many ways can 10 pearls be strung on a bond to form a necklace?
20. State De Morgan's laws in logic.

PART C

Answer any five questions. Each question carries 5 marks

21. State and prove Euler's formula.
22. Prove that $1+2+2^{2}+\ldots .+2^{n}=2^{n+1}-1$.
23. Define the following graphs with an example.
(a) Eulerian graph
(b) Planar graph
24. If the ratio ${ }^{2 n} C_{3}:{ }^{n} C_{3}=11: 1$, find the value of n.
25. Determine whether the following compound preposition is a tautology.

$$
(p \leftrightarrow q) \leftrightarrow((p \wedge q) \vee(\neg p \wedge \neg q))
$$

26. Let R be a relation on the set N of natural numbers defined by $R=\{(a, b) / a+3 b=12$, $\mathrm{a} \in N, b \in N\}$. Find (i) the relation R (ii) domain of R (iii) range of R .
27. State and prove Dominance Laws in Boolean Algebra.

PART D

Answer any two questions. Each question carries 12 marks

28. (a) Determine whether the following compound preposition is a tautology, using truth table. $(q \rightarrow r) \wedge r \wedge(p \rightarrow q)$.
(b) State and prove idempotent law in Boolean algebra.
29. (i) Suppose $A=\{2,3,6,9,10,12,14,18,20\}$ and R is the partial order relation defined on A where $x R y$ if and only if x is a divisor of y.
(a) Draw the Hasse diagram for R.
(b) Find all maximal elements.
(c) Find all minimal elements.
(ii) Let $\mathbf{A}=\{1,2,3,4,5,6,7\}$ and \mathbf{R} be a relation on \mathbf{A} defined by $\mathbf{R}=\{(x, y) /(x-y)$ is divisible by 3 , where $x, y \in \mathbf{A}\}$.
(a) Find the relation \mathbf{R}
(b) Is \mathbf{R} an equivalence relation? Explain.
30. Explain Dijkstra's algorithm to find the shortest path. Also apply it on the following graph by taking the vertex ' 0 ' as source.
(12 marks)

31. Without using truth table prove the following
$\sim(p \leftrightarrow q) \equiv(p \vee q) \wedge \sim(p \wedge q) \equiv(p \wedge \sim q) \vee(\sim p \wedge q)$
