B Sc DEGREE END SEMESTER EXAMINATION - JULY 2021

SEMESTER 2 : MATHEMATICS (CORE COURSE)

COURSE : 19U2CRMAT2 : ADVANCED CALCULUS AND TRIGONOMETRY

(For Regular - 2020 Admission and Supplementary - 2019 Admission)

Time : Three Hours

PART A

Answer any 10 (2 marks each)

- 1. Expand $\cos x$ by Maclaurin's series.
- 2. Expand $\log \sin x$ in powers of x 2.
- 3. Find the n^{th} derivative of $y = (ax + b)^m$.
- 4. Find the circumference of a circle of radius r using parametric forms.
- 5. Find y'(x), y''(x) without eliminating the parameter for the curve $x = sect, \ y = \tan t$; $t = \frac{\pi}{4}$.
- 6. Sketch the graph of $r = \theta$, $\theta \ge 0$ in polar coordinates by plotting points.
- 7. Find the arc length of the spiral $r=e^{ heta}$ between heta=0 and $heta=\pi$.
- 8. Separate into its real and imaginary parts the expression $\cosh(\alpha + \beta i)$.
- 9. Prove that $tanh u = sin\theta$
- 10. Define area using double integral.
- 11. Write the parametric equation of the paraboloid z = 4 x 2 y 2
- 12. Define simple polar region with example

(2 x 10 = 20)

PART B Answer any 5 (5 marks each)

- ^{13.} Find the equation of the circle of curvature at the point (0, b) of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 14. Find all the asymptotes of the curve $y^3 6xy^2 + 11x^2y 6x^3 + x + y = 0$.
- 15. Find the points on the cardioid $r = 1 \cos \theta$ at which there is a horizontal tangent line , a vertical tangent line , or a singular point.
- 16. Find the area of the region in the first quadrant that is within the cardioid $r=1-\cos heta$.
- 17. Sum the series $\sin \alpha + c \sin(\alpha + \beta) + \frac{c^2}{2!} \sin(\alpha + 2\beta) + \cdots$ inf
- 18. Show that $\cos h^{-1}x = \log \left[x + \sqrt{x^2 1}
 ight]$, when x is real.
- 19. Use double integration to find the area enclosed by the curves $y = \sin x$ and $y = \cos x$ for $\pi/4 \le x \le \pi/2$
- 20. Find the value of the $\iint xydA$ over the region enclosed between $y = \frac{x}{2}, \ y = \sqrt{x}, \ x = 2 \ and \ x = 4$

(5 x 5 = 25)

PART C Answer any 3 (10 marks each)

21. Prove Leibnitz theorem. If $y=\left(x^2-1
ight)^n$, prove that $ig(x^2-1ig)y_{n+2}+2xy_{n+1}-nig(n+1ig)y_n=0.$

Max. Marks: 75

- 22. Sum to n terms and to infinity the series $1+a\,\cos\, heta\,+a^2\,\cos\,2 heta\,+a^3\,\cos\,3 heta+\ldots,\quad |a|<1$
- 23. Define area and volume using double integrals. Evaluate $\int \int \sin \theta \, dA$ where the region is the first quadrant that is evaluated outside the circle r = 2 and inside the cardiod r = 2(1+cos θ).
- 24. Find the volume of the solid enclosed between the paraboloids $z = 5x^2 + 5y^2$ and $z = 6 7x^2 y^2$. (10 x 3 = 30)