\qquad

B Sc DEGREE END SEMESTER EXAMINATION - JULY 2021
 SEMESTER 2 : MATHEMATICS (CORE COURSE) COURSE : 19U2CRMAT2 : ADVANCED CALCULUS AND TRIGONOMETRY
 (For Regular - 2020 Admission and Supplementary - 2019 Admission)

Time : Three Hours
Max. Marks: 75

PART A
 Answer any 10 (2 marks each)

1. Expand $\cos x$ by Maclaurin's series.
2. Expand $\log \sin x$ in powers of $x-2$.
3. Find the $n^{t h}$ derivative of $y=(a x+b)^{m}$.
4. Find the circumference of a circle of radius r using parametric forms.
5. Find $y^{\prime}(x), y^{\prime \prime}(x)$ without eliminating the parameter for the curve $x=s e c t, y=\tan t ; t=\frac{\pi}{4}$.
6. Sketch the graph of $r=\theta, \theta \geq 0$ in polar coordinates by plotting points.
7. Find the arc length of the spiral $r=e^{\theta}$ between $\theta=0$ and $\theta=\pi$.
8. Separate into its real and imaginary parts the expression $\cosh (\alpha+\beta i)$.
9. Prove that $\tanh u=\sin \theta$
10. Define area using double integral.
11. Write the parametric equation of the paraboloid $z=4-x^{2}-y^{2}$
12. Define simple polar region with example

PART B

Answer any 5 (5 marks each)
13. Find the equation of the circle of curvature at the point $(0, b)$ of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
14. Find all the asymptotes of the curve $y^{3}-6 x y^{2}+11 x^{2} y-6 x^{3}+x+y=0$.
15. Find the points on the cardioid $r=1-\cos \theta$ at which there is a horizontal tangent line, a vertical tangent line, or a singular point.
16. Find the area of the region in the first quadrant that is within the cardioid $r=1-\cos \theta$.
17. Sum the series $\sin \alpha+c \sin (\alpha+\beta)+\frac{c^{2}}{2!} \sin (\alpha+2 \beta)+\cdots$ inf
18. Show that $\cos h^{-1} x=\log \left[x+\sqrt{x^{2}-1}\right]$, when x is real.
19. Use double integration to find the area enclosed by the curves $y=\sin x$ and $y=\cos x$ for $\pi / 4 \leq x \leq \pi / 2$
20. Find the value of the $\iint x y d A$ over the region enclosed between $y=\frac{x}{2}, y=\sqrt{x}, x=2$ and $x=4$

PART C

Answer any 3 (10 marks each)
21. Prove Leibnitz theorem. If $y=\left(x^{2}-1\right)^{n}$, prove
that $\left(x^{2}-1\right) y_{n+2}+2 x y_{n+1}-n(n+1) y_{n}=0$.
22. Sum to n terms and to infinity the series $1+a \cos \theta+a^{2} \cos 2 \theta+a^{3} \cos 3 \theta+\ldots, \quad|a|<1$
23. Define area and volume using double integrals. Evaluate $\iint \sin \theta d A$ where the region is the first quadrant that is evaluated outside the circle $r=2$ and inside the cardiod $r=2(1+\cos \theta)$.
24. Find the volume of the solid enclosed between the
paraboloids $z=5 x^{2}+5 y^{2}$ and $z=6-7 x^{2}-y^{2}$.
$(10 \times 3=30)$

