B. Sc. DEGREE END SEMESTER EXAMINATION - JULY 2021 SEMESTER - 2: CHEMISTRY (CORE COURSE) COURSE: 15U2CRCHE2, THEORETICAL AND INORGANIC CHEMISTRY - II
 (Common for supplementary 2018/2017/2016/2015 admissions)

Time: Three Hours
Max. Marks: 60

SECTION A

Answer all questions. Each question carries 1 mark

1. In the halogen family \qquad has the highest electron affinity.
2. What is ionization enthalpy?
3. The most polar molecule among $\mathrm{HI}, \mathrm{HCl}, \mathrm{HBr}$ and HF is \qquad
4. The bond order of He_{2} molecule is \qquad
5. In the gravimetric estimation of iron, it is precipitated as \qquad
6. The state of hybridisation of S in SF_{6} is \qquad
7. What is NP ratio?
8. If 2 g of a radioisotope decays to 1 g in 7 days, 1 g of the sample will become 0.25 g
in --------------------days $(1 \times 8=8)$

SECTION B

Answer any six questions, each question carries $\mathbf{2}$ marks

9. Distinguish between the terms 'atomic radius' and 'covalent radius.
10. Give the Born-Lande equation and explain the terms involved.
11. Which has higher boiling point, o-nitro phenol or p-nitrophenol? Explain the reason.
12. Differentiate between 'bonding' and antibonding' molecular orbitals.
13. What are dipole-induced dipole forces?
14. State and explain Gieger - Nuttal Rule
15. Explain packing fraction.
16. Define ' R_{f} value'. How is it useful in identification of a compound?

SECTION C

Answer any four questions, each question carries 5 marks
17. Discuss the applications of solubility product in the separation of cations into analytical groups.
18. Based on MO theory predict which of the following are paramagnetic
a) $\mathrm{He}_{2}{ }^{+}$
b) NO
c) NO^{+}
d) $\mathrm{N}_{2}{ }^{+}$
e) $\mathrm{B}_{2}{ }^{+}$
f) $\mathrm{B}_{2}{ }^{-}$
19. Discuss $s p^{2}$ and $s p^{3} d$ hybridisations with suitable examples.
20. Explain briefly the construction of MO's by LCAO treatment of the $\mathrm{H}_{2}{ }^{+}$ion.
21. State the slater rules for calculating the shielding constant. How is the effective nuclear charge related to screening constant?
22. Explain the basic principle of TLC? What are the advantages and disadvantages of TLC?

$$
(5 \times 4=20)
$$

SECTION D
Answer any Two questions. Each question carries 10 marks
23. Predict the shape and bond angles of the following molecule based on VSEPR theory.
a) SF_{4}
b) ClF_{3}
c) XeF_{2} d) IF_{5}
e) $\mathrm{Xe} \mathrm{F}_{4}$
24. a) State and explain Fajan's rules
b) Explain the valance bond theory and Band theory of metallic bonding.
25. a) Explain Born-Haber cycle taking NaCl as example.
b) The enthalpy of formation of NaCl , enthalpy of sublimation of Na , ionization of Na , first ionization energy of Cl_{2} and electron affinity of chlorine are respectively - 410, 109, 495, 240 and -349 kJmol^{-1}. Calculate the lattice energy of sodium chloride using Born-Haber Cycle.
26. Explain in detail the Principle and Procedure for the gravimetric estimation of Barium as BaSO_{4}
($10 \times 2=20$)

