Reg.	No	Name	21U431-S
------	----	------	----------

B. Sc. DEGREE END SEMESTER EXAMINATION JULY - 2021

SEMESTER – 4: PHYSICS (COMPLEMENTARY FOR CHEMISTRY)

COURSE: 15U4CPPHY8: PHYSICAL OPTICS, LASER PHYSICS AND SUPERCONDUCTIVITY

(Common for Improvement 2018 admission / Supplementary 2018/2017/2016/2015/2014 admissions)

Time: Three Hours Max. Marks: 60

PART A

Answer **all** questions. Each question carries **1** mark

- 1. State the principle of superposition.
- 2. Write down the conditions for having constructive interference and destructive interference explaining the letters used in the condition.
- 3. Define polarisation of light waves? Which property of light waves does the phenomenon of polarisation reveal?
- 4. What do you mean by double refraction? Give an example for a doubly refracting crystal.
- 5. Write down the significance of population inversion in lasing action?
- 6. List four functions of optical resonator of a laser device?
- 7. Define superconductivity. Give an example.
- 8. What do you mean by Cooper pairs? What is their significance in modern physics?

 $(1 \times 8 = 8)$

PART B

Answer any six questions. Each question carries 2 marks

- 9. Differentiate between Fresnel and Fraunhofer diffraction by mentioning four aspects.
- 10. Define diffraction of light. What is the use of a diffraction grating?
- 11. Explain how plane polarised light can be produced by selective absorption, with an example.
- 12. Differentiate between positive and negative crystals with examples for each.
- 13. Briefly explain how population inversion is established in Ruby laser?
- 14. Obtain the relation between the Einstein's coefficients in lasing action.
- 15. Write a short note on high temperature superconductors with an example.
- 16. Some insulators act as superconductors. Substantiate.

 $(2 \times 6 = 12)$

PART C

Answer any four questions. Each question carries 4 marks

- 17. In Young's double slit experiment, the separation of the slits is 1.9 mm and fringe spacing is 0.31mm at a distance of 1 meter from the slits. Calculate the wavelength of light.
- 18. Calculate the least width of a plane diffraction grating having 500 lines/cm, which will just resolve in the second order, the sodium lines of wavelengths 5890 A° and 5896 A°.
- 19. Calculate the thickness of a doubly refracting crystal required to introduce a path difference of $\lambda/2$ between the ordinary ray and extraordinary ray when $\lambda = 6000 \text{ A}^{\circ}$, $m_0=1.5442$, $\mu_{\rm E}=1.5533$.
- 20. How will you orient the polarizer and the analyser so that a beam of natural light is reduced to (i) 0.5 (ii) 0.25 (iii) 0.75 (iv) 0.125.

- 21. What fraction of sodium atom is in the first excited state in a sodium vapour lamp at a temperature of 250°C. Given wavelength of sodium line is 5900 A°.
- 22. For a given superconductor, the critical fields are respectively, 1.4×10^5 and 4.2×10^5 ampere/metre for 14K and 13K. Calculate the transition temperature and critical fields at 0K and 4.2×10^5 k. ($4 \times 4 = 16$)

PART D

Answer *any two* questions. Each question carries *12* marks

- 23. Discuss the formation of interference fringes on a screen due to the monochromatic light passing through two parallel slits. Also arrive at the expression for fringe width.
- 24. With the help of neat diagrams, explain the construction and working of a He-Ne laser.
- 25. Explain the mechanism of conduction in superconductivity, with an account on Cooper pairs and BCS theory. Mention two applications of superconductivity.
- 26. What do you mean by quarter wave plate? Explain its construction and use. How can it be used to produce and detect beams of elliptically and circularly polarized light?

 $(12 \times 2 = 24)$
