B Sc DEGREE END SEMESTER EXAMINATION - JULY 2021

SEMESTER 4 : MATHEMATICS

COURSE : 19U4CRMAT4 ANALYTIC GEOMETRY NUMERICAL METHODS AND NUMBER THOERY

(For Regular - 2019 Admission)

Time : Three Hours

Max. Marks: 75

PART A Answer any 10 (2 marks each)

- The distance of a point from the centre of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ is $\frac{5}{\sqrt{2}}$. Find the eccentric 1. angle of this point.
- Find the equation of the bisectors of the angles between the lines $x^2 4xy y^2 = 0$. 2.
- For what point of the parabola $y^2=18x$ is the ordinate equal to three times the abscissa? 3.
- Find the equation of the normal to the ellipse $rac{x^2}{a^2}+rac{y^2}{b^2}=1$ at the point $(x_1,y_1).$ 4.
- Find the polar equation of the line passing through (r_1, θ_1) and (r_2, θ_2) . 5.
- Find the points on the conic $\frac{9}{r} = 2 + \sqrt{2}\cos\theta$ whose radius vector is 3. 6.
- Transform the equation to polar form $x^2 + y^2 ax by = 0$. 7.
- Use Newton-Raphson method to find a root of the equation $x = e^{-x}$. 8.
- 9. Evaluate f(2) where $f(x) = \log x + x - \cos x$.
- 10. Explain complete system of residues.
- 11. Define quadratic congruence.
- Show that if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$. 12.

 $(2 \times 10 = 20)$

PART B Answer any 5 (5 marks each)

- Derive the standard equation of hyperbola. 13.
- 14. Show that the equation of the ellipse whose axes ore of lengths 8 and 6 and equations are 4x+3y-2=0 and 3x-4y+1=0 is $\frac{(3x-4y+1)^2}{64} + \frac{(4x+3y-2)^2}{36} = 25.$
- Prove that the distances of two points (x_1, y_1) and (x_2, y_2) from the centre of a circle are 15. proportional to the distance of each from the polar of the other.
- Find the equation of pair of asymptotes to the general equation of hyperbola. 16.
- Use Newton-Raphson method to find a root correct to three decimal places, of the equation 17. $\sin x = x/2$, given that the root lies between $\pi/2$ and π .
- Obtain a root, correct to three decimal places, of the equation $x^3+x^2-1=0$ using the 18. bisection method.
- Let $n = p_1 p_2 \dots p_r$ be a composite square-free integer, where the p_i are distinct primes. If 19. $p_i - 1 | n - 1$ for i = 1, 2, ..., r, then prove that n is an absolute pseudoprime.
- If the integer n>1 has the prime factorization $n=p_1^{k_1}p_2^{k_2}\cdots p_r^{k_r}$, then prove that 20.

$$\phi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_r}\right).$$
(5 x 5 = 25)

PART C Answer any 3 (10 marks each)

- 21. Show that the equation $7x^2 48xy 7y^2 20x + 140y + 300 = 0$ represents a hyperbola and find its canonical equation.
- 22. Show that four normals can be drawn to a hyperbola through a given point and the locus of the feet of these normals is a rectangular hyperbola.
- 23. Explain briefly the method of iteration to compute a real root of the equation f(x) = 0, stating the condition of convergence of the sequence of approximations. Give a graphical representation of the method.
- 24. Prove that the quadratic congruence $x^2 + 1 \equiv 0 \pmod{p}$, where p is an oddd prime, has a solution if and only if $p \equiv 1 \pmod{4}$.

 $(10 \times 3 = 30)$