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Sec�on A

 Answer any 10 (1.5 marks each)
 

1. Show that the divisor func�ons  are mul�plica�ve.
2. Let  be an arithme�cal func�on with . Prove that  is mul�plica�ve if

and only if  .

3. Assume . Prove that  the linear congruence    has
 solu�ons, if and only if, .

4. State and prove Wilson's theorem.
5. Let  be a domain. Prove that  is a unit if and only if .
6. Let  be a domain. Prove that   is irreducible if and only if every divisor of    is

an associate of  or a unit.
7. Prove that factoriza�on into irreducible is possible in .
8. Let  be two ideals of  .  Prove that  iff 
9. If  is an ideal of  with   is prime , prove that 

10. Prove that  is isomorphic(as rings) to .  

 
Sec�on B

 Answer any 4 (5 marks each)
 

11. Derive the formula for divisor sum of  .
12. Prove that the set of la�ce points visible from the origin has density 
13. Find all integers  such that 
14.

Prove that for , .

15. Prove that every Euclidean domain is a unique factoriza�on domain.
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Let  be an ideal of . Prove that , where  is the

discriminant.

 
Sec�on C

 Answer any 4 (10 marks each)
 

17.1. Let . Prove that  is a group under Dirichlet
mul�plica�on.
OR

2. Prove that the average order of  is .
18.1. 1. Prove the converse of Wilson's theorem.

2. Find all posi�ve integers  for which  is a power of .

OR
2. Prove that for every integer , 

19.1. Define Euclidean quadra�c Field. Prove that the ring of integers   of  is
Euclidean for .
OR

2. If  is Noetherian, prove that  is Noetherian.
20.1. Prove that factoriza�on of elements of  into irreducibles is unique if and only if

every ideal of  is principal.
OR

2. Find all the ideals in  which contain the element 6.
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