

MSc DEGREE END SEMESTER EXAMINATION- OCTOBER-NOVEMBER 2017 SEMESTER 3 : MATHEMATICS

COURSE: 16P3MATT15; NUMBER THEORY

(For Regular - 2016 admission)

Time: Three Hours Max. Marks: 75

Section A Answer any 10 (1.5 marks each)

- 1. Show that the divisor functions are multiplicative.
- 2. Let f be an arithmetical function with f(1)=1. Prove that f is multiplicative if and only if $f\left(p_1^{a_1}\dots p_k^{a_k}\right)=f\left(p_1^{a_1}\right)\dots f\left(p_k^{a_k}\right)$.
- 3. Assume (a, m) = d. Prove that the linear congruence $ax \equiv b \pmod{m}$ has solutions, if and only if, d|b.
- 4. State and prove Wilson's theorem.
- 5. Let D be a domain. Prove that x is a unit if and only if x|1.
- 6. Let D be a domain. Prove that x is irreducible if and only if every divisor of x is an associate of x or a unit.
- 7. Prove that factorization into irreducible is possible in \mathfrak{O} .
- 8. Let $\mathfrak{a},\mathfrak{b}$ be two ideals of \mathfrak{O} . Prove that $\mathfrak{a}|\mathfrak{b}$ iff $\mathfrak{a}\supseteq\mathfrak{b}$
- 9. If $\mathfrak{a} \neq 0$ is an ideal of $\mathfrak O$ with $N(\mathfrak a)$ is prime , prove that $\mathfrak a|N(\mathfrak a)$
- 10. Prove that $\mathbb{R}[x,y]/\langle x \rangle$ is isomorphic(as rings) to $\mathbb{R}[y]$.

10 x 1.5 (15)

Section B Answer any 4 (5 marks each)

- 11. Derive the formula for divisor sum of $\lambda(n)$.
- 12. Prove that the set of lattice points visible from the origin has density $6/\pi^2$
- 13. Find all integers n such that arphi(n)=12
- Prove that for $x\geq 2$, $\pi(x)=rac{artheta(x)}{\log x}+\int\limits_2^xrac{artheta(t)}{t\log^2 t}dt.$
- 15. Prove that every Euclidean domain is a unique factorization domain.
- 16.

Let $\mathfrak a$ be an ideal of $\mathfrak O.$ Prove that $N(\mathfrak a)=\left|\frac{\Delta[\alpha_1,\dots,\alpha_n]}{\Delta}\right|$, where Δ is the discriminant.

4 x 5 (20)

Section C Answer any 4 (10 marks each)

17.1. Let $\mathscr{F}=\{f:\mathbb{N}\to\mathbb{C}|\ f(1)\neq 0\}.$ Prove that \mathscr{F} is a group under Dirichlet multiplication.

OR

- 2. Prove that the average order of $\varphi(n)$ is $3n/\pi^2$.
- 18.1. 1. Prove the converse of Wilson's theorem.
 - 2. Find all positive integers n for which (n-1)! + 1 is a power of n.

OR

- 2. Prove that for every integer $n \geq 2$, $\frac{1}{6} \frac{n}{\log n} < \pi(n) < 6 \frac{n}{\log n}$
- 19.1. Define Euclidean quadratic Field. Prove that the ring of integers $\,\mathfrak O$ of $\mathbb Q(\sqrt d)$ is Euclidean for d=-2,-11.

OR

- 2. If R is Noetherian, prove that R[x] is Noetherian.
- 20.1. Prove that factorization of elements of $\mathfrak O$ into irreducibles is unique if and only if every ideal of $\mathfrak O$ is principal.

OR

2. Find all the ideals in $\mathbb{Z}[\sqrt{-5}]$ which contain the element 6.

4 x 10 (40)