\qquad Name

MSc DEGREE END SEMESTER EXAMINATION- OCTOBER-NOVEMBER 2017
 SEMESTER 3 : MATHEMATICS COURSE : 16P3MATT15 ; NUMBER THEORY
 (For Regular - 2016 admission)

Section A
 Answer any 10 (1.5 marks each)

1. Show that the divisor functions are multiplicative.
2. Let f be an arithmetical function with $f(1)=1$. Prove that f is multiplicative if and only if $\quad f\left(p_{1}^{a_{1}} \ldots p_{k}^{a_{k}}\right)=f\left(p_{1}^{a_{1}}\right) \ldots f\left(p_{k}^{a_{k}}\right)$.
3. Assume $(a, m)=d$. Prove that the linear congruence $a x \equiv b(\bmod m)$ has solutions, if and only if, $d \mid b$.
4. State and prove Wilson's theorem.
5. Let D be a domain. Prove that x is a unit if and only if $x \mid 1$.
6. Let D be a domain. Prove that x is irreducible if and only if every divisor of x is an associate of x or a unit.
7. Prove that factorization into irreducible is possible in \mathfrak{O}.
8. Let $\mathfrak{a}, \mathfrak{b}$ be two ideals of \mathfrak{O}. Prove that $\mathfrak{a} \mid \mathfrak{b}$ iff $\mathfrak{a} \supseteq \mathfrak{b}$
9. If $\mathfrak{a} \neq 0$ is an ideal of \mathfrak{O} with $N(\mathfrak{a})$ is prime, prove that $\mathfrak{a} \mid \mathrm{N}(\mathfrak{a})$
10. Prove that $\mathbb{R}[x, y] /\langle x\rangle$ is isomorphic(as rings) to $\mathbb{R}[y]$.
10×1.5 (15)

Section B

Answer any 4 (5 marks each)
11. Derive the formula for divisor sum of $\lambda(n)$.
12. Prove that the set of lattice points visible from the origin has density $6 / \pi^{2}$
13. Find all integers n such that $\varphi(n)=12$
14.

Prove that for $x \geq 2, \pi(x)=\frac{\vartheta(x)}{\log x}+\int_{2}^{x} \frac{\vartheta(t)}{t \log ^{2} t} d t$.
15. Prove that every Euclidean domain is a unique factorization domain.
16.

Let \mathfrak{a} be an ideal of \mathfrak{O}. Prove that $\mathrm{N}(\mathfrak{a})=\left|\frac{\Delta\left[\alpha_{1}, \ldots, \alpha_{n}\right]}{\Delta}\right|$, where Δ is the discriminant.
4×5 (20)

Section C
 Answer any 4 (10 marks each)

17.1. Let $\mathscr{F}=\{f: \mathbb{N} \rightarrow \mathbb{C} \mid f(1) \neq 0\}$. Prove that \mathscr{F} is a group under Dirichlet multiplication.

OR

2. Prove that the average order of $\varphi(n)$ is $3 n / \pi^{2}$.
18.1. 1. Prove the converse of Wilson's theorem.
3. Find all positive integers n for which $(n-1)!+1$ is a power of n.

OR
2. Prove that for every integer $n \geq 2, \frac{1}{6} \frac{n}{\log n}<\pi(n)<6 \frac{n}{\log n}$
19.1. Define Euclidean quadratic Field. Prove that the ring of integers \mathfrak{O} of $\mathbb{Q}(\sqrt{d})$ is Euclidean for $d=-2,-11$.
OR
2. If R is Noetherian, prove that $R[x]$ is Noetherian.
20.1. Prove that factorization of elements of \mathfrak{O} into irreducibles is unique if and only if every ideal of \mathfrak{O} is principal.
OR
2. Find all the ideals in $\mathbb{Z}[\sqrt{-5}]$ which contain the element 6 .

