Reg. No: \qquad Name:
Q. Code: U122.

BSC DEGREE END SEMESTER EXAMINATION SEMESTER-1: MATHEMATICS CORE COURSE FOR BSC MATHEMATICS/ BSC COMPUTER APPL. COURSE - 15U1CRMAT1-15U1CRCMT1: FOUNDATION OF MATHEMATICS

Time : Three Hours
Max. Marks:75

Part A

Answer all questions. Each question carries 1 mark.

1. Find the power set of $\{\{\varnothing, a\}\}$.
2. Find the number of elements in $A \times B \times C$, where $A=\{1,2,4\}$ and $B=C=\{0\}$.
3. Let $M_{R}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 0\end{array}\right]_{\text {be a matrix representing a relation } R \text {. Find the matrix repre- }}$ senting the relation R^{2}.
4. How many relations are there on the set $\{a, b, c, d\}$?
5. Is the relation $R=\{(1,1),(1,2),(2,3),(1,3),(4,4)\}$ symmetric? Justify your
6. What is the negation of the proposition ' $2+1=4$ '
7. What is the truth value of the compound proposition ' $21<32$ and $2+3=6$ '
8. Identify the law. $\neg(p \wedge q) \equiv \neg p \vee \neg q$.
9. Is 28 a perfect number? justify your Answer.
10. What are amicable numbers?

Part B

Answer any eight questions. Each question carries 2 marks.
11. Prove or disprove that $\mathrm{d} x+y \mathrm{e}=\mathrm{d} x \mathrm{e}+\mathrm{d} y \mathrm{e}$ for all real numbers x and y.
12. If $f(x)=2 x+3$ and $g(x)=3 x+2$, find $(f \circ g)(x)$.
13. Find $\bigcup_{i=1}^{\infty} A_{i} \bigcap_{\text {and }}^{\infty} A_{i}$, where $A_{i}=\{i, i+1, i+2\}$, for $i=2,3,4, \ldots$
14. List the ordered pairs in the relation R from $A=\{0,1,2,3,4\}$ to $B=\{0,1,2,3\}$, where (a, b) $\in R$ if and only if $a+b=4$.
15. Is the relation \leq defined on R is anti-symmetric? Explain.
16. Find the bitwise OR of 0110110110 and 1100011101. Also, find the length of the resultant bit string.
17. Prove that $p \vee(p \wedge q) \equiv p$, for any two propositions p and q.
18. If the domain of $Q(x, y, z)$ consists of (x, y, z), where $x \in\{0,1,2\}, y \in\{0,1\}$ and $z \in\{0,1\}$, then rewrite the proposition $\forall y Q(0, y, 0)$ using only negations, disjunctions and/or conjunctions.
19. Write the gcd of 81 and 110 as the linear combination of the two integers.
20. What is Euler's totient φ ? Calculate $\varphi(500)$.
$(8 \times 2=16)$

Part C
 Answer any five questions. Each question carries 5 marks.

21. If a and r are real numbers, $r 6=0$, prove that the value of $\sum_{j=0}^{n} a r^{j}$ is $\frac{a r^{n+1}-a}{r-1}$, when $r 6=1$.
22. Let $R_{1}=\{(1,2),(2,3),(3,4)\}$ and $R_{2}=\{(1,1),(1,2),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(3,4)\}$ be relations from $\{1,2,3\}$ to $\{1,2,3,4\}$. Then find (a) $R_{1} \cup R_{2}$ (b) $R_{1} \cap R_{2}$ (c) $R_{1}-R_{2}$ (d) $R_{2}-R_{1}$ and (e) $R_{1} \oplus R_{2}$
23. Draw the directed graph of the relation $R=$ $\{(1,1),(1,3),(2,1),(2,3),(2,4),(3,1),(3,2),(4,1)\}$ on the set $\{1,2,3,4\}$. Using the graph, explain whether the relation R is reflexive, symmetric or anti-symmetric.
24. Show that $(p \rightarrow q) \wedge(p \rightarrow r) \equiv p \rightarrow(q \wedge r)$.
25. Give a logical proof for $\neg \forall x P(x) \equiv \exists x\urcorner P(x)$.
26. Show that $n(n+1)(2 n+1)$ is divisible by 6 .
27. Show that $3^{2 n}+24 n-1$ is divisible by 32 .

Part D

Each question carries 12 marks.
28. (a) Prove that if B is countable subset of an uncountable set A, then $A-B$ is uncountable.
(b) Show that the set of all irrational numbers is uncountable
29. Prove that a relation R on a set A is transitive if and only if $R^{n} \subseteq R$ for $n=1,2,3, \ldots$.
30. Show that if n is an integer and $n^{3}+5$ is odd, then n is even using
(a) a proof by contraposition
(b) a proof by contradiction
31. State and prove Little Fermat's Theorem.
$(2 \times 12=24)$

