Name

Max. Marks: 75

MSc DEGREE END SEMESTER EXAMINATION - MARCH/APRIL 2019

SEMESTER 2 : PHYSICS

COURSE : 16P2PHYT05 : MATHEMATICAL METHODS IN PHYSICS- II

(For Regular - 2018 Admission and Supplementary - 2017/2016 Admissions)

Time : Three Hours

Section A Answer all the following (1 marks each)

- 1. The value of the integral $I = \frac{1}{2\pi i} \oint_c \frac{dz}{z-3}$ where c is the circle |z| = 1 is (a) 1 (b) 1/2 (c) 2 (d) 0
- - (c) both of these

(d) no conclusion may be drawn out of the given statement.

3. The Laplace transform of Cos[at] is (a) $a/(s^2-a^2)$ (b) $s/(s^2-a^2)$ (c) $a/(s^2+a^2)$ (d) $s/(s^2+a^2)$

4. The solution of one dimensional heat equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ exist, if (a) RHS is a constant (b) both LHS and RHS are constant (c) LHS is a constant (d) all of these

- 5. The solution of Laplace's equation in spherical polar coordinates, when it is axially symmetric about Z-axis involves
 - (a) associated Legendre's function
 - (b) Legendre's polynomial
 - (c) Bessel's function
 - (d) Helmholtz function

 $(1 \times 5 = 5)$

Section B

Answer any 7 (2 marks each)

- 6. Show that $f(z) = z^2$ satisfies Cauchy Reimann equations.
- 7. What is a Lie group?
- 8. Describe how Earth's nutation can be explained on the basis of transforms.
- 9. Find the inverse Laplace transform of $2(s^4 + 3)(s^2 + 4)$
- 10. What is the Laplace transform of sin(ht)?
- 11. Define group, subgroup and class.
- 12. State two properties of Green's functions.

- 13. Explain the different boundary conditions used to solve differential equations.
- 14. Find the solution of one dimensional Laplace equation in Cartesian coordinates.
- 15. Describe nonlinear PDE's

 $(2 \times 7 = 14)$

Section C Answer any 4 (5 marks each)

- 16. Deduce Cauchy's integral formula, assuming Cauchy's integral theorem.
- 17. Discuss isomorphism and homomorphism of groups with examples.
- 18. Show that the Fourier transform of a Gaussian function is another Gaussian.
- 19. Obtain the Fourier transform of Dirac delta function $\delta(t-x)$
- 20. Show that Green's function is symmetric with respect to its two variables.
- 21. State and explain any five different types of partial differential equations that occur in Physics and the phenomena to which they are applied.

(5 x 4 = 20)

Section D Answer any 3 (12 marks each)

22.1. Derive Laurent's expansion of a function f(z) about $z = z_0$.

OR

- 2. Discuss Laurent's expansion and compare with Taylor's expansion.
- 23.1. Explain the applications of group theory in particle physics.

OR

- 2. Consider the set of the following six functions: $f_1(x) = x$, $f_2(x) = 1-x$, $f_3(x) = x/(x-1)$, $f_4(x) = 1/x$, $f_5(x) = 1/(1-x)$, $f_6(x) = (x-1)/x$. Let the law of combination be defined as $f_i(x)*f_j(x)=f_i(f_j(x))$. Check if the set form a group and whether this group is isomorphic with the group of transformations of an equilateral triangle.
- 24.1. Find the Laplace transform of $\frac{\sin(at)}{t}$. Does the transform of $\frac{\cos(at)}{t}$ exist?
 - 2. Separate Helmholtz' equation in cylindrical coordinates.

 $(12 \times 3 = 36)$