B Sc DEGREE END SEMESTER EXAMINATION OCT. 2020: JANUARY 2021

SEMESTER - 5: MATHEMATICS (CORE COURSE FOR MATHEMATICS AND COMPUTER APPLICATION)

COURSE: 15U5CRMAT5-15U5CRCMT5, MATHEMATICAL ANALYSIS

(Common for Regular 2018 admission and Improvement 2017/ Supplementary 2017/2016/2015 admissions)

PART A

Answer all questions. Each question carries 1 mark.

1. Define deleted neighborhood of a point with an example.
2. Obtain the derived set of $\{x \in \mathbb{Q}: 0<x<1\}$
3. State true or false: Every Subset of an uncountable set is uncountable.
4. Define infimum of a set with an example.
5. State true or false: Every open interval (a, b) contains infinitely many rational numbers.
6. Define monotonic sequence with an example.
7. Define Cauchy sequence.
8. Define limit inferior and limit superior of a sequence.
9. State de Moivre's Formula.
10. What is the principal argument of $-1-i$.

PART B

Answer any eight questions. Each question carries 2 marks.

11. Prove or disprove: Set of rational numbers is uncountable.
12. Prove: Closure of a bounded set is bounded.
13. Give an example of a set which is neither open nor closed. Justify your claim.
14. Prove: For any positive real number a there exist a positive real number n such that $n>a$.
15. Prove: The greatest element of a set, if it exists, is the supremum of the set.
16. Prove: In a bounded sequence, limit inferior is the smallest limit point and limit superior is the greatest limit point.
17. Show that the sequence $\left\{n+(-1)^{n} n\right\}$ oscillates finitely.
18. Prove: The sequence $\left\{S_{n}\right\}$ where $S_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ cannot converge.
19. Prove or disprove: $\operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)$.
20. Evaluate $(\sqrt{3}+i)^{7}$.

PART C

Answer any five questions. Each question carries 5 marks.
21. Show that interior of a set is an open set.
22. Prove: The union of two closed sets is closed.
23. State and prove: Sandwich theorem.
24. Prove: Every open interval contains a rational number.
25. Show that the sequence $\left\{\left(b_{n}\right)^{1 / n}\right\}$ is convergent and find its limit where $b_{n}=\frac{n^{n}}{(n+1)(n+2) \ldots(n+n)}$.
26. Prove: A necessary and sufficient condition for the convergence of a sequence is that it is bounded and has a unique limit point.
27. Sketch the following sets and determine which are bounded:
(a) $|z-2+i| \leq 1$
(b) $|2 z+3|>4$
(c) $\operatorname{Im}(z)>1$

PART D

Answer any two questions. Each question carries 12 marks.
28. Prove the following:
(a) The derived set of a set is closed.
(b)The derived set of a bounded set is bounded.
(c) The supremum of a bounded non-empty set, when not a member of the set, will be a limit point of the set.
29. State the two forms of Completeness Property of real numbers and prove their equivalence.
30. State and prove:
(a) Cesaro's Theorem
(b) Cauchy's second theorem on limits
(c) Cauchy's General Principle of convergence.
31. (a) State and prove the triangular inequality for complex numbers.
(b) Prove by induction that $\overline{z_{1}+z_{2}+\cdots+z_{n}}=\overline{z_{1}}+\overline{z_{2}}+\cdots+\overline{z_{n}}$ and $\overline{z_{1} z_{2} \cdots z_{n}}=\overline{z_{1}} \overline{z_{2}} \ldots \overline{z_{n}}$

