\qquad Name

M. Sc DEGREE END SEMESTER EXAMINATION - OCT/NOV 2020: JAN 2021

SEMESTER 3 : MATHEMATICS
COURSE : 16P3MATT15 : NUMBER THEORY
(For Regular - 2019 Admission and Supplementary - 2016/2017/2018 Admissions)
Time : Three Hours
Max. Marks: 75

PART A

Answer all (1.5 marks each)

1. Prove that $\varphi(n)$ is even for $n \geq 3$
2. Suppose that the set \mathscr{F} of all arithmetical functions is closed under Dirichlet multiplication. Prove that there is an identity element in \mathscr{F}.
3. Assume $(a, m)=d$. Prove that the linear congruence $a x \equiv b(\bmod m)$ has solutions, if and only if, $d \mid b$.
4. Let $(a, m)=1$. Prove that $a x \equiv b(\bmod m) \Longrightarrow x \equiv b a^{\varphi(m)-1}(\bmod m)$.
5. Define proper factorization in a commutative ring with unity.
6. Let D be a domain. Prove that any two units are associates and any associate of a unit is a unit.
7. Let D be a domain and x and y non-zero elements of D. Prove that x is irreducible if and only if $\langle x\rangle$ is maximal among the proper principal ideals of D.
8. If $\mathfrak{a} \neq 0$ is an ideal of \mathfrak{O} with $\mathrm{N}(\mathfrak{a})$ is prime, prove that \mathfrak{a} is prime.
9. Prove that every non-zero ideal of \mathfrak{O} has a finite number of divisors.
10. Prove that $\mathbb{R}[x, y] /\langle x\rangle$ is isomorphic(as rings) to $\mathbb{R}[y]$.
$(1.5 \times 10=15)$

PART B
Answer any 4 (5 marks each)
11. Prove that two lattice points (a, b) and (m, n) are mutually visible if, and only if, $a-m$ and $b-n$ are relatievly prime.
12. Prove that the set of lattice points visible from the origin has density $6 / \pi^{2}$
13.

Prove that for all $x \geq 1, \sum_{n \leq x} \sigma_{1}(n)=\frac{1}{2} \zeta(2) x^{2}+O(x \log x)$.
14. Prove that for $n \geq 1, \frac{1}{6} n \log n<p_{n}<12\left(n \log n+n \log \left(\frac{12}{e}\right)\right)$ where p_{n} is the $n^{\text {th }}$ prime.
15. Prove that the units $U(R)$ of a commutative ring R with unity form a group under multiplication.
16. Prove that every non zero prime ideal of \mathfrak{O} is maximal.

Answer any 4 (10 marks each)

17.1.

Prove that if $x \geq 1$ and $\alpha>0, \alpha \neq 1 \sum_{n \leq x} \sigma_{\alpha}(n)=\frac{\zeta(\alpha+1)}{\alpha+1} x^{\alpha+1}+O\left(x^{\beta}\right)$ where $\beta=\max \{1, \alpha\}$.

OR

2. Prove that $\sum_{p \leq x}\left[\frac{x}{p}\right] \log p=x \log x+O(x)$ for $x \geq 2$ where the sum is extended over all primes $\leq x$.
18.1. 1. Prove the converse of Wilson's theorem.
3. Find all positive integers n for which $(n-1)!+1$ is a power of n.

OR

2. If p is odd, $p>1$, prove that

$$
\begin{aligned}
& \text { 1. } 1^{2} 3^{2} 5^{2} \ldots(p-2)^{2}=(-1)^{P+1) / 2}(\bmod p) \\
& \text { 2. } 2^{2} 4^{2} 6^{2} \ldots(p-1)^{2}=(-1)^{(P+1) / 2}(\bmod p)
\end{aligned}
$$

19.1. Prove that a prime in a domain D is always irreducible. Is converse true? Justify.

OR

2. Define Euclidean quadratic Field. Prove that the ring of integers \mathfrak{O} of $\mathbb{Q}(\sqrt{d})$ is Euclidean for $d=-2,-11$.
20.1. Prove that the non-zero fractional ideals of \mathfrak{O} form an abelian group under multiplication.

OR
Prove that every non-zero ideal of \mathfrak{O} can be written as a product of prime ideals, uniquely
2. up to order of the factors.
$(10 \times 4=40)$

