\qquad

M. Sc. DEGREE END SEMESTER EXAMINATION - APRIL 2021
 SEMESTER 4 : MATHEMATICS
 COURSE : 16P4MATT20EL : NUMERICAL ANALYSIS
 (For Regular - 2019 Admission and Supplementary - 2018/2017/2016 Admissions)

Time : Three Hours
Max. Marks: 75

PART A

Answer All (1.5 marks each)

1. Three approximate values of the number $1 / 3$ are $0.30,0.33,0.34$. Which of these is the best approximation?
2. Sum the terms : $0.1532,15.45,0.000354,305.1,8.12,143.3,0.0212,0.634$ and 0.1734
3. State Mean Value theorem and Rolle's theorem.
4. Define centro-symmetric equations.
5. Define well conditioned matrix.
6. Express the error obtained in polynomial interpolation with $n+1$ values.
7. Briefly explain forward differences.
8. Prove that $E=e^{\text {hd }}$
9. If $y_{1}=4, y_{3}=12, y_{4}=19, y_{x}=7$ find x.
10. Given $y^{\prime}-1=x y$ and $y(0)=1 . O b t a i n$ Taylor's series for $y(x)$ and compute $y(0.1)$
$(1.5 \times 10=15)$
PART B
Answer any 4 (5 marks each)
11. Evaluate $f(1)$ using Taylor's series for $f(x)=x^{3}-3 x^{2}+5 x-10$.
12. Given $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}$, construct the Taylor's series approximation of order 0 to 7 at $x=\pi / 3$ and state their absolute error.
13. Solve the system using Gauss elimination method
$0.0002 x+0.3003 y=0.1002$
$2.0000 x+3.0000 y=2.0000$
14. Find the cubic polynomial which takes the following values: $y(1)=24, y(3)=120, y(5)=336$ and $y(7)=720$. Hence obtain the value of $y(8)$.
15. Derive Newton's backward interpolation formula.
16. Given the differential equation $y^{\prime \prime}-x y^{\prime}-y=0$ with the conditions $y(0)=1$ and $y^{\prime}(0)=0$, use Taylor's series method to determine the value of $y(0.1)$.

PART C
Answer any 4 (10 marks each)
17.1. Explain the procedure to solve bisection method and hence solve $f(x)=x^{3}-2 x-5$ correct to 3 decimal places.

OR
2. Explain Gauss elimination method and solve the equations $3 x+y+2 z=3,2 x-3 y-z=-3, x+2 y+z=$ 4.
18.1. Explain $L U$ decomposition and solve the equations $2 x+3 y+z=9, x+2 y+3 z=6,3 x+y+2 z=8$ using $L U$ decmposition method.

OR
2. Prove that the divided differences are symmetric in their arguments and that $\left[x_{0}, x_{1}\right]$ is the first derivative of the polynomial. Explain Aitken's Scheme along with the table.
19.1. A solid of revolution is formed by rotating about the x axis, the area between the x axis, the lines $x=0$ and $x=1$ and a curve through the points with the following coordinates

x	0	0.25	0.50	0.75	1.00

y $1.00000 .98960 .95890 .9089 \quad 0.8415$
Estimate the volume of the solid formed.
OR
2. Use predictor - corrector formulae for tabulating the solution of $y^{\prime}=x+y, \mathrm{y}(0)=0$, for the interval $0.4<x \leq 1.0$ with $\mathrm{h}=0.1$.
20.1. Solve the given differential equation $y^{\prime}=1+y^{2}$ where $\mathrm{y}=0$ when $\mathrm{x}=0$ using Adam - Moulton method and compute $y(0.8)$, using fourth order Runge-kutta method to find the starter values.

OR
2. (a)Explain Picard's method of successive approximation. (b)Find the value of $\mathrm{y}(0.2), \mathrm{y}(0.4), \mathrm{y}(0.6)$, for the given differential equation $y^{\prime}=1+y^{2}$ where $\mathrm{y}=0$ when $\mathrm{x}=0$.
($10 \times 4=40$)

