21P4040

M. Sc DEGREE END SEMESTER EXAMINATION - APRIL 2021

SEMESTER 4 : MATHEMATICS

COURSE : 16P4MATT19EL : THEORY OF WAVELETS

(For Regular - 2019 Admission and Supplementary - 2018/2017/2016 Admissions)

Time : Three Hours

Max. Marks: 75

PART A

Answer All (1.5 marks each)

- 1. Define translation by k operator.
- Prove that (x * y) * z = x * (y * z) for all $x, y, z \in l^2(Z_N)$. 2.
- For any $z \in l^2(Z_N)$, prove that z is purely imaginary if and only if $\hat{z}(m) = -\hat{z}(N-m)$ 3.
- If N is divisible by 2^p , define a 4. p^{th} stage wavelet filter sequence. Hence define the system matrix $A_l(n)$.
- With the usual notations express f_l and g_l interms of upsampling operators and convolutions. 5.
- Suppose N is divisible by 2^p . Suppose $u_l, v_l \in l^2(Z(rac{N}{2}^{l-1})$ for $l=1,2,\ldots,p$. 6. Define $f_1=v_1,g_1=u_1$ and for $l=2,3,\ldots,p$ define $f_l=g_{l-1}*U^{l-1}(v_l)$, prove that $f_l = u_1 * U(u_2) * U^2(u_3) * \ldots * U^{l-2}(u_{l-1}) * U^{l-1}(v_l)$.
- Define the trigonometric system. Hence define a trigonometric polynomial. Is $sin(heta- heta_0)$ a 7. trigonometric polynomial ? justify.
- If $\mathsf{z}\mathsf{=}(z(n))_{n\in Z}$ is square summable and $\, lpha \in C$, prove that 8. αz , is square summable.
- For $z, w \in l^2(Z)$, define z * w. 9.
- For $z, w \in i$ (2), define $z \in w$. Suppose $z, w \in l^2(Z)$ and $l \in N$. Then prove that $D^l(z) * w = D^l(z * U^l(w))$. (1.5 x 10 = 15) 10.

PART B Answer any 4 (5 marks each)

- Let $b\in l^2(Z_N)$ and $T_b:l^2(Z_N) o l^2(Z_N)$ be defined by $T_b(z)=b*z.$ Then prove that T_b is 11. translation invariant linear transformation.
- Suppose N is divisible by 2^l , x, y, $w \in l^2(Z^l_{N/2})$ and $z \in l^2(Z_N).$ Then prove that 12. $D^{l}(z) * w = D^{l}(z * U^{l}(w) \text{ and } U^{l}(x * y) = U^{l}(x) * U^{l}(y).$
- Describe the analysis phase and synthesis phase in a filter bank diagram through an example. 13.

Let H be a Hilbert space. 14. i) If $\{f_n\}_{n=1}^\infty$ is a sequence in H and $f \in H$, prove that $f_n o f$ implies $< f_n, g > o < f, g >$ for all $g \in H$. ii) If $\{a_j\}_{j\in Z}$ is an orthonormal set in H and $z=(z(n))_{n\in Z}\in l^2(Z)$, prove that $<\sum\limits_{j\in Z}z(j)a_j,a_m>=z(m)$ for all $m\in Z.$

- Prove that $L^2[(-\pi,\pi)]$ is a normed space. 15.
- 16. (i) Define $f(heta)=rac{1}{4\sqrt{| heta|}}$ when heta
 eq 0 and f(0)=0. Prove that $f\in L^2([-\pi,\pi))$ but $f^2 \notin L^2([-\pi,\pi)).$ (ii) Prove that there exist $z, w \in l^2(Z)$ such that $z * w \notin l^2(Z)$. (iii) Prove that $z * \delta = z$ for all $z \in l^2(Z)$.

 $(5 \times 4 = 20)$

PART C Answer any 4 (10 marks each)

- 17.1. (a) State and prove the Fourier inversion formula
 - (b) Derive the parsevel's relation.
 - (c) From (b) deduce the Plancherel's formula.

OR

- 2. (a) Describe first stage shannon basis for $l^2(Z_N)$ if N is divisible by 4. (b) Deduce the first stage real shannon basis for $l^2(Z_N)$.
- 18.1.

1. Suppose N is divisible by $2^l, g_{l-1} \in l^2(Z_N)$ and the set $\{R_{2^{l-1}k}g_{l-1}\}_{k=0}^{\frac{N}{2^{l-1}-1}}$ is orthonormal and has $\frac{N}{2^{l-1}}$ elements. Suppose $u_l, v_l \in l^2(Z_{N/2}^{l-1})$ and the system matrix $A_l(n)$ is unitary for all $n = 0, 1, 2, \ldots, (N/2^l) - 1$. Define $f_l = g_{l-1} * U^{l-1}(v_l)$ and $g_l = g_{l-1}(*)U^{l-1}(u_l)$. With the usual notations prove that $V_{-l} \oplus W_{-l} = V_{-l+1}$

OR

- 2. Describe Haar wavelet system.
- 19.1. Suppose $f \in L^1([-\pi,\pi))$ and $\langle f, e^{in\theta} \rangle = 0$ for all $n \in Z$. Then prove that $f(\theta)$ =0 a.e ii) Prove that the trigonometric system is complete in $L^2([-\pi,\pi))$.
 - 2. Suppose $T: L^2([-\pi,\pi)) \to L^2([-\pi,\pi))$ is a bounded translation invariant linear transformation. Then prove that $T(e^{im\theta}) = \lambda_m e^{im\theta}$ for some $\lambda_m \in C$ and it is true for all $m \in Z$.
- 20.1. Suppose $u, v \in l^1(Z)$. Then prove that $B = \{R_{2k}v\}_{k \in Z} \bigcup \{R_{2k}u\}_{k \in Z}$ is a complete orthonormal set in $l^2(Z)$ if and only if $A(\theta)$ is unitary for all $\theta \in [0, \pi)$. OR
 - 2. Let $p \in N$. For l = 1, 2, ..., p, suppose $u_l, v_l \in l^1(Z)$ and the system matrix $A_l(\theta)$ is unitary for all $\theta \in [0, \pi)$. Define $f_1 = v_1, g_1 = u_1$, and for l = 2, 3, 4, ..., p define $f_l = g_{l-1} * U^{l-1}(v_l)$ and $g_l = g_{l-1} * U^{l-1}(u_l)$. Then prove that $f_1, f_2, \ldots, f_p, g_p$ generate a p^{th} stage wavelet system for $l^2(Z)$.

 $(10 \times 4 = 40)$