M Sc DEGREE END SEMESTER EXAMINATION- NOVEMBER 2017 SEMESTER 1 : MATHEMATICS

COURSE: 16P1MATT05; COMPLEX ANALYSIS

(Common for Regular - 2017 / Supplementary - 2016 Admissions)

Time : Three Hours Max. Marks: 75

Section A Answer all the questions (1.5 marks each)

- 1. Prove that an analytic function in a region Ω whose derivatives vanishes identically must reduce to a constant
- 2. Show that w=iz+i maps half plane x>0 onto the halfplane v>1
- 3. Prove that the map $w=ar{z}$ is not conformal
- 4. State Morera's theorem
- 5. Evaluate $\int_r x dz$, where r is the directed line segment from 0 to 1+i
- 6. $r(t)=t^2e^{i\pi/4}, t\in(0,1]$ is a non simple smooth contour. True or false. Justify
- 7. Find the types of singularities and their order of the function $\dfrac{1+2z^2}{z^3+z^5}$
- 8. Define simply connected region with examples.
- 9. Find the poles and residues of the function 1/sinz
- 10. Find the residue of $\dfrac{z+1}{z^2(z-3)}$ at z=0

 $(1.5 \times 10 = 15)$

Section B Answer any 4 (5 marks each)

- 11. Find a bilinear transformation which maps the points 0, -i, -1 onto the points i, 1, 0
- 12. Give a precise definition of a single-valued branch of loglogz and prove that it is analytic
- 13. Evaluate $\int_C rac{e^{2z}dz}{(z+1)^4}$ where C is |z|=3
- 14. Show that the order of a zero of a polynomial equals the order of its first non-vanishing derivative.
- 15. Evaluate $\int_C rac{sin\pi z^2 + cos\pi z^2}{(z-1)^2(z-2)} dz$, where C is the circle |z|=3
- 16. State Rouche's theorem and apply it to determine the number of roots of the equation $z^8-4z^5+z^2-1=0$

 $(5 \times 4 = 20)$

Section C

Answer either 1 OR 2 of each question (10 marks each)

17.1. Discuss the transformation $w=\frac{1}{z}$?. Also find the images of the infinite strips $(i)1/4 < y < 1/2 \\ (ii)1/4 < x < 1/2$

OR

- 2. Find the Mobius transformation which maps the circle $|z| \le 1$ on $|w-1| \le 1$ and makes the points z=0,1 correspond to w=1/2,0 respectively
- 18.1. a) Evaluate $\int_C rac{cos(e^z)}{z(z+2)} dz$ where C=z:|z|=1 , taken in the positive sense
 - b) Evaluate $\int_C rac{sinhz}{z^2(z-2)}dz$, where C=z:|z|=1 , taken in the positive sense

OR

- 2. a. Evaluate $\int_{|z|=4} rac{z^4}{(z-i)^3} dz$
 - b. State and prove Cauchy's Integral formula
- 19.1. State and prove Maximum principle

OR

- 2. Define a simply connected region with two examples. Also prove that a region Ω is simply connected iff $n(\varUpsilon,a)=0$ for all cycles \varUpsilon in Ω and all point a which do not belong to Ω
- 20.1. a. Evaluate $\int_0^\infty \frac{cosx}{x^2+a^2} dx$, a real
 - b. Evaluate $\int_{-}^{}0^{\infty}rac{x^{2}}{(x^{2}+a^{2})^{3}}dx$

OR

- 2. a. Evaluate $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+a^2)^3} dx$
 - b. Evaluate $\int_0^\pi/2rac{dx}{a+sin^2x}dx, |a|>1$

 $(10 \times 4 = 40)$