\qquad

M. Sc DEGREE END SEMESTER EXAMINATION - OCT/NOV 2020: JAN 2021 SEMESTER 3 : MATHEMATICS COURSE : 16P3MATT13 : GRAPH THEORY
 (For Regular - 2019 Admission and Supplementary - 2016/2017/2018 Admissions)

Time : Three Hours
Max. Marks: 75
PART A
Answer all (1.5 marks each)

1. Define line graph of a loopless graph G.What is the line graph of $K_{1, n}$?
2. Give an example of a graph G and its subgraph H with the property $\lambda(G)=\lambda(H)$.
3. Prove or disprove: If closure of G is Hamiltonian, then G is Hamiltonian.
4. Give an example of a tree with two central vertices, one of which is also a centroidal vertex.
5. Determine $\tau\left(C_{4}\right)$
6. Draw the Petersen graph
7. Define proper vertex coloring and chromatic number of a graph G.
8. Define maximum matching and maximal matching in a graph. Give an example of a maximal matching which is not a maximum matching.
9. Explain the Jordan Curve Theorem.
10. Determine $\chi^{\prime}\left(K_{4}\right)$
$(1.5 \times 10=15)$
PART B
Answer any 4 (5 marks each)
11. Give an example of a graph on 10 vertices containing exactly 4 blocks.
12. Show that every connected graph contains a spanning tree.
13. (a) Show that a tree with at least two vertices contains at least two pendant vertices.
(b) Show that if $\delta(G) \geq 2$, then G contains a cycle.
14. Briefly describe the Konigsberg Bridge problem and its significance.
15. Prove that for any graph $G, \alpha(G)+\beta(G)=n$
16. Show that $K_{3,3}$ is nonplanar.

PART C
Answer any 4 (10 marks each)
17.1. Define automorphism of a simple graph G. Show that the set $\Gamma(G)$ of all automorphisms of a simple graph G is a group with respect to the compositions of mappings as the group operation. Further show that for any simple graph $G, \Gamma(G)=\Gamma\left(G^{c}\right)$

OR
2. (a) Show that the automorphism group of K_{3} is isomorphic to the symmetric S_{3}.
(b) Define identity graph.Show that the graph G with vertex set $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}$ and edge set $\left\{v_{1} v_{4}, v_{2} v_{3}, v_{3} v_{4}, v_{4} v_{5}, v_{5} v_{6}, v_{6} v_{7}\right\}$ is an identity graph.
18.1. Find the number of spanning trees of the graph $C_{3} \vee K_{1}$

OR
2. Show that every tree has a center consisting of either a single vertex or two adjacent vertices.
19.1. Show that a graph G is Eulerian if and only if it has an odd number of cycle decompositions. OR
2. Show that for every positive integer k, there exists a triangle-free graph with chromatic number k.
20.1. Show that if G is a loopless bipartite graph, $\chi^{\prime}(G)=\Delta(G)$. Show by means of an example that the converse need not be true.

OR
2. Show that every planar graph is 5-vertex colorable.
$(10 \times 4=40)$

