M Sc DEGREE END SEMESTER EXAMINATION- NOVEMBER 2017 SEMESTER 1 : MATHEMATICS COURSE : 16P1MATT04 ; ORDINARY DIFFERENTIAL EQUATIONS

(Common for Regular - 2017 / Supplementary - 2016 Admissions)

Time : Three Hours

Section A Answer all the questions (1.5 marks each)

1. Is $(e^{-t},-e^{-t})$ a solution of $rac{dx}{dt}=3x+4y.$ Justify your answer.

$$rac{dy}{dt}=2x+y$$

- 2. Find any one characteristic vector of the matrix $\begin{bmatrix} 3 & 1 \\ 12 & 2 \end{bmatrix}$.
- 3. Is there exist any homogeneous linear system of two unknown functions on an interval $-1 \le t \le 1$ such that its wronskian of two solutions is W(t) = t on $-1 \le t \le 1$. Justify your answer.
- 4. Define Cauchy product of two series and state a necessary condition for the cauchy product of two convergent series to be convergent.

5. Give an example of two convergent series
$$\sum_{j=0}^{\infty} a_j$$
 and $\sum_{j=0}^{\infty} b_j$ such that $\sum_{j=0}^{\infty} a_j b_j$ is not

convergent.

- 6. The sequence of functions $\{cos(nx)\}_{n=1}^{\infty}$ is orthonormalized with respect to the weight function r(x) = 1 on the interval $0 \le x \le \pi$. State true or false and justify your answer.
- 7. Cosider the sequence of fuctions $\{\varphi_n(x)\}_{n=1}^{\infty}$ where $\varphi_n(x) = k_n sin(nx)$. Find $k_n(n = 1, 2, 3, ...)$ such that the given sequence is orthonormal with respect to the weight function r(x) = 1 on the interval $0 \le x \le \pi$.
- 8. Find $L[4sin(x)cos(x) + 2e^{-x}]$.
- 9. Find a function f whose Laplace transform is $\frac{2}{p+3}$.

10. Find
$$L[x^2 sin(ax)]$$
.

 $(1.5 \times 10 = 15)$

Section B Answer any 4 (5 marks each)

- ^{11.} Find all characteristic values and vectors of the matrix $\begin{vmatrix} 3 & -5 \\ -4 & 2 \end{vmatrix}$.
- 12. Find the general solution of the system $\frac{dx}{dt} = 3x + y, \frac{dy}{dt} = 4x + 3y.$
- 13. Use Picard's method to solve the initial value problem y' = 2y, y(0) = 1.

Max. Marks: 75

Name

- 14. Explain Strum - Liouville problem and properties of its characteristic values and characteristic functions.
- Use the Laplace transform to solve the integral equation $y(x) = 1 \int_0^x (x t)y(t)dt$. 15.
- Show that the differential equation $y^{\prime\prime}+a^2y=f(x)$, $y(0)=y^\prime(0)=0$ has solution 16. $y(x) = rac{1}{a}\int_0^x f(t)sina(x-t)dt$

 $(5 \times 4 = 20)$

Section C Answer either 1 OR 2 of each question (10 marks each)

17.1. Solve
$$trac{dx}{dt}=x+y$$
 $trac{dy}{dt}=-3x+5y$ OR

2.

- Find all characteristic values and vectors of the matrix $\begin{bmatrix} -2 & 5 & 5 \\ -1 & 4 & 5 \\ 3 & 3 & 2 \end{bmatrix}$.
- Let p be an arbitrary real constant. Use a differential equation to derive the power 18.1. series expansion for the function $y = (1 + x)^p$. OR
 - Verify that 0 is an ordinary point and then find the power series solution of the 2. differential equation $(1 + x^2)y'' + xy' + y = 0$.
- Consider the Strum-Liouville problem $rac{d}{dx} \left[p(x) rac{dy}{dx}
 ight] + \left[q(x) + \lambda r(x)
 ight] y = 0$ with 19.1. boundary conditions $A_1y(a) + A_2y'(a) = 0$ and $B_1y(b) + B_2y'(b) = 0$ where A_1, A_2, B_1, B_2 are real constants such that A_1 and A_2 are not both zero and B_1 and B_2 are not both zero. Show that the characteristic functions corresponding to distinct characteristic values are orthogonal with respect to the weight function r(x) on the interval $a \leq x \leq b$. OR
 - Find characteristic functions of the Strum Liouville problem 2. $rac{d^2y}{dx^2}+\lambda y=0, y(0)=0, y(\pi/2)=0$ and show that the characteristic funcions corresponding to distinct characteristic values are orthogonal with respect to the weight function r(x) = 1 on the interval $0 \le x \le \pi$.
- Use Laplace transform to solve the differential equation 20.1. $xy'' + (2x+3)y' + (x+3)y = 3e^{-x}$ with initial condition y(0) = 0. OR
 - Use the principle of superposition to solve the equation $y'' + 5y' 6y = 5e^{3t}$ with 2. initial conditions y(0)=0, y'(0)=0.

 $(10 \times 4 = 40)$