\qquad Name

M Sc DEGREE END SEMESTER EXAMINATION- NOVEMBER 2017

SEMESTER 1 : MATHEMATICS

COURSE : 16P1MATT04 ; ORDINARY DIFFERENTIAL EQUATIONS
(Common for Regular - 2017 / Supplementary - 2016 Admissions)

Time : Three Hours

Max. Marks: 75

Section A

Answer all the questions (1.5 marks each)

1. Is $\left(e^{-t},-e^{-t}\right)$ a solution of $\frac{d x}{d t}=3 x+4 y$. Justify your answer.

$$
\frac{d y}{d t}=2 x+y
$$

2. Find any one characteristic vector of the matrix $\left[\begin{array}{cc}3 & 1 \\ 12 & 2\end{array}\right]$.
3. Is there exist any homogeneous linear system of two unknown functions on an interval $-1 \leq t \leq 1$ such that its wronskian of two solutions is $\mathrm{W}(\mathrm{t})=\mathrm{t}$ on $-1 \leq t \leq 1$. Justify your answer.
4. Define Cauchy product of two series and state a necessary condition for the cauchy product of two convergent series to be convergent.
5. Give an example of two convergent series $\sum_{j=0}^{\infty} a_{j}$ and $\sum_{j=0}^{\infty} b_{j}$ such that $\sum_{j=0}^{\infty} a_{j} b_{j}$ is not convergent.
6. The sequence of functions $\{\cos (n x)\}_{n=1}^{\infty}$ is orthonormalized with respect to the weight function $r(x)=1$ on the interval $0 \leq x \leq \pi$. State true or false and justify your answer.
7. Cosider the sequence of fucntions $\left\{\varphi_{n}(x)\right\}_{n=1}^{\infty}$ where $\varphi_{n}(x)=k_{n} \sin (n x)$. Find $k_{n}(n=1,2,3, \ldots)$ such that the given sequence is orthonormal with respect to the weight function $r(x)=1$ on the interval $0 \leq x \leq \pi$.
8. Find $L\left[4 \sin (x) \cos (x)+2 e^{-x}\right]$.
9. Find a function f whose Laplace transform is $\frac{2}{p+3}$.
10. Find $L\left[x^{2} \sin (a x)\right]$.
$(1.5 \times 10=15)$

Section B
 Answer any 4 (5 marks each)

11. Find all characteristic values and vectors of the matrix $\left[\begin{array}{cc}3 & -5 \\ -4 & 2\end{array}\right]$.
12. Find the general solution of the system $\frac{d x}{d t}=3 x+y, \frac{d y}{d t}=4 x+3 y$.
13. Use Picard's method to solve the initial value problem $y^{\prime}=2 y, y(0)=1$.
14. Explain Strum - Liouville problem and properties of its characteristic values and characteristic functions.
15. Use the Laplace transform to solve the integral equation $y(x)=1-\int_{0}^{x}(x-t) y(t) d t$.
16. Show that the differential equation $y^{\prime \prime}+a^{2} y=f(x), y(0)=y^{\prime}(0)=0$ has solution $y(x)=\frac{1}{a} \int_{0}^{x} f(t) \operatorname{sina}(x-t) d t$

Section C
 Answer either 1 OR 2 of each question (10 marks each)

17.1. Solve $t \frac{d x}{d t}=x+y$

$$
t \frac{d y}{d t}=-3 x+5 y
$$

OR
2.

Find all characteristic values and vectors of the matrix $\left[\begin{array}{ccc}-2 & 5 & 5 \\ -1 & 4 & 5 \\ 3 & -3 & 2\end{array}\right]$.
18.1. Let p be an arbitrary real constant. Use a differential equation to derive the power series expansion for the function $y=(1+x)^{p}$.
OR
2. Verify that 0 is an ordinary point and then find the power series solution of the differential equation $\left(1+x^{2}\right) y^{\prime \prime}+x y^{\prime}+y=0$.
19.1. Consider the Strum-Liouville problem $\frac{d}{d x}\left[p(x) \frac{d y}{d x}\right]+[q(x)+\lambda r(x)] y=0$ with boundary conditions $A_{1} y(a)+A_{2} y^{\prime}(a)=0$ and $B_{1} y(b)+B_{2} y^{\prime}(b)=0$ where $A_{1}, A_{2}, B_{1}, B_{2}$ are real constants such that A_{1} and A_{2} are not both zero and B_{1} and B_{2} are not both zero. Show that the characteristic funcions corresponding to distinct characteristic values are orthogonal with respect to the weight function $r(x)$ on the interval $a \leq x \leq b$.
OR
2. Find characteristic functions of the Strum - Liouville problem
$\frac{d^{2} y}{d x^{2}}+\lambda y=0, y(0)=0, y(\pi / 2)=0$ and show that the characteristic funcions corresponding to distinct characteristic values are orthogonal with respect to the weight function $r(x)=1$ on the interval $0 \leq x \leq \pi$.
20.1. Use Laplace transform to solve the differential equation $x y^{\prime \prime}+(2 x+3) y^{\prime}+(x+3) y=3 e^{-x}$ with initial condition $y(0)=0$. OR
2. Use the principle of superposition to solve the equation $y^{\prime \prime}+5 y^{\prime}-6 y=5 e^{3 t}$ with initial conditions $\mathrm{y}(0)=0, \mathrm{y}^{\prime}(0)=0$.

