17P131

M Sc DEGREE END SEMESTER EXAMINATION- NOVEMBER 2017 SEMESTER 1 : MATHEMATICS

COURSE : 16P1MATT03 ; MEASURE THEORY AND INTEGRATION

(Common for Regular - 2017 / Supplementary - 2016 Admissions)

Time : Three Hours

Max. Marks: 75

Section A Answer all the questions (1.5 marks each)

- 1. Define a σ -algebra of subsets of a set X. Is the power set of X a σ -algebra of subsets of X?. Justify.
- 2. Define the extended real number system.
- 3. Give an example of a decreasing sequence $< E_n >$ of measurable sets such that

$$m\left(\cap_{1}^{\infty}E_{n}
ight)
eq\lim mE_{n}.$$

- 4. Define the positive part and negative part of a function.
- 5. Prove that a measurable function f is integrable over a measurable set E if and only if both f^+ and f^- are integrable over E.
- 6. If f is a non-negative measurable function and 'a' is a positive constant such that $f \ge a$ on a measurable set E, prove that $\int_E f \ge amE$.
- 7. Let (X, \mathcal{B}, μ) be a measure space. Suppose $A, B \in \mathcal{B}$ and $A \subset B$. Then prove that $\mu A \leq \mu B$.
- 8. Define a positive set, a negative set and a null set with respect to a signed measure.
- 9. Let (X, B, μ) be a measure space and f be a non-negative measurable function defined on X. Prove that the set function ϕ defined as B by $\phi(E) = \int_E f d\mu$ is a measure.
- 10. Prove that the representation of a rectangle in the form $A \times B$ need not be unique.

 $(1.5 \times 10 = 15)$

Section B Answer any 4 (5 marks each)

11. Let A be any set and E_1, E_2, \ldots, E_n be a finite collection of disjoint measurable sets. Then prove that

$$m^*\left(A\cap (igcup_{i=1}^n E_i)
ight) = \sum_{i=1}^n m^*(A\cap E_i).$$

Hence (and not otherwise), prove that

$$m^*(igcup_{i=1}^n E_i) = \sum_{i=1}^n m^*E_i.$$

- 12. (a) Prove that χ_A is measurable if and only if A is measurable. (b) Prove that the set of all points on which a sequence $\langle f_n \rangle$ of measurable functions converges is measurable.
- 13. Let f be a non-negative measurable function and $\langle E_i \rangle$ be a disjoint sequence of measurable sets. Let $E = \cup E_i$. Then prove that

$$\int_E f = \sum \int_{E_i} f.$$

- 14. a. If ϕ is a simple function taking the distinct values a_1, a_2, \ldots, a_n on the disjoint measurable sets A_1, A_2, \ldots, A_n respectively, then state the canonical representation of ϕ .
 - b. If E is any measurable set, prove that

$$\int_E \phi = \sum_1^n a_i \,\, m(A_i \cap E)$$

Using it prove that

$$\int_{A\cup B}\phi=\int_A\phi+\int_B\phi$$

if A and B are two disjoint measurable sets.

15. Let μ be a σ -finite measure on an algebra \mathfrak{A} and let μ^* be the outer measure generated by μ . Prove that a set E is μ^* -measurable if and only if E is the proper difference A - B of a set A in $\mathfrak{A}_{\sigma\delta}$ and a set B with $\mu^*B = 0$. Each set B with $\mu^*B = 0$ is contained in a set C in $\mathfrak{A}_{\sigma\delta}\delta$ with $\mu^*C = 0$.

16. If $\{A_i\}$ is a monotone sequence of subsets of $X \times Y$, then prove that

 $\lim A_i^y = (\lim A_i)^y$ and $\lim (A_i)_x = (\lim A_i)_x$, for each $x \in X$ and $y \in Y.$

(5 x 4 = 20)

Section C Answer either 1 OR 2 of each question (10 marks each)

- 17.1. (a) Prove that the collection $\mathcal M$ of all measurable sets is a σ -algebra. (b) Prove that (a,∞) is measurable for all $a\in R$. OR
 - 2. (a) If f and g are two real valued measurable functions with the same domain, then (i) Prove that f + g is measurable.

(ii) Prove that cf is measurable, if c is a constant. Hence prove that af + bg is measurable, if a and b are two constants. Deduce that f - g is measurable. (b) If f is a real valued measurable function defined on $(-\infty, \infty)$ and g is a continuous function, then prove that $g \circ f$ is measurable.

- 18.1. (a) State and prove Monotone Convergence theorem.(b) State and prove Lebesgue Convergent theorem.OR
 - 2. (a) If f and g are non-negative measurable functions, prove the following

(i) $\int_E cf = c\int_E f$, c>0(ii) $\int_E (f+g) = \int_E f + \int_E g$ (iii) If $f\leq g$ a.e., then

$$\int_E f \leq \int_E g$$

(b) Let $\langle f_n \rangle$ be a sequence of non-negative measurable functions that converge to f and suppose $f_n \leq f$ for all n. Then prove that $\int f = \lim \int f_n$.

19.1. (a) Let f be an extended real valued function defined on X, where (X, \mathcal{B}) is a measurable space. Then prove that

the following statements are equivalent:

- (i) $\{x\in X: f(x)<lpha\}\in \mathcal{B} ext{ for each }lpha\in R$
- (ii) $\{x\in X: f(x)\leq lpha\}\in \mathcal{B} ext{ for each }lpha\in R$
- (iii) $\{x\in X: f(x)>lpha\}\in \mathcal{B} ext{ for each }lpha\in R$
- (iv) $\{x\in X: f(x)\geq lpha\}\in \mathcal{B} ext{ for each }lpha\in R$

(b) If μ is a complete measure and f is a measurable function, then prove that f = g a.e. implies g is measurable.

OR

2. (a) Let (X, B, μ) be a measuer space and f be a measurable function defined on X such that $\int f d\mu$ is defined. Prove that the set function ν defined on B by $\nu E = \int_E f d\mu$ is a signed measure.

(b) Find a Hahn decomposition of X w.r.t. ν (c) Find a Jordan decomposition of ν .

20.1. If \mathcal{A} is an algebra, then prove that

$$S(\mathcal{A})=\mathcal{M}_{\circ}(\mathcal{A})$$
 .

OR

2. Let $[[X, S, \mu]]$ and $[[Y, \mathcal{J}, v]]$ be σ -finite measure spaces. For $V \in S \times \mathcal{J}$, write $\phi(x) = \nu(V_x)$ and $\psi(y) = \mu(V^y)$ for all $x \in X$ and $y \in Y$. Then prove that ϕ is S-measurable and ψ is \mathcal{J} -measurable and $\int_X \phi d\mu = \int_Y \psi d\nu$.

 $(10 \times 4 = 40)$