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Sec�on A

 Answer all the ques�ons (1.5 marks each)
 

1. Define a -algebra of subsets of a set . Is the power set of  a -algebra of subsets of 
?. Jus�fy.

2. Define the extended real number system.
3. Give an example of a decreasing sequence  of measurable sets such that

 

4. Define the posi�ve part and nega�ve part of a func�on.
5. Prove that a measurable func�on  is integrable over a measurable set  if and only if 

both  and  are integrable over .
6. If  is a non-nega�ve measurable func�on and ' ' is a posi�ve constant such that  on 

a measurable set , prove that 
 .

7. Let  be a measure space. Suppose  and . Then prove that 
.

8. Define a posi�ve set, a nega�ve set and a null set with respect to a signed measure.
9. Let  be a measure space and  be a non-nega�ve measurable func�on defined 

on . Prove that the set func�on  defined as  by  is  a measure.

10. Prove that the representa�on of a rectangle in the form  need not be unique.

 
Sec�on B

 Answer any 4 (5 marks each)
 

11. Let  be any set and , , ,  be a finite collec�on of disjoint measurable sets. Then 
prove that 

 

 
 Hence (and not otherwise), prove that
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12. (a) Prove that  is measurable if and only if  is measurable. 
 (b) Prove that the set of all points on which a sequence  of measurable func�ons 

converges is measurable.
13. Let  be a non-nega�ve measurable func�on and  be a disjoint sequence of 

measurable sets. Let . Then prove that
 

14. a. If  is a simple func�on taking the dis�nct values  on the disjoint 
measurable sets  respec�vely, then state the canonical 
representa�on of .

b. If  is any measurable set, prove that 

Using it prove that 

if  and  are two disjoint measurable sets.

15. Let  be a -finite measure on an algebra  and let  be the outer measure generated by 
. Prove that a set  is -measurable if and only if  is the proper difference  of a 

set  in  and a set  with .
 Each set  with  is contained in a set  in  with .

16. If  is a monotone sequence of subsets of , then prove that 
 and , for each  and .

 
Sec�on C

 Answer either 1 OR 2 of each ques�on (10 marks each)
 

17.1. (a) Prove that the collec�on  of all measurable sets is a -algebra. 
 (b) Prove that  is measurable for all .

OR
     2. (a) If  and  are two real valued measurable func�ons with the same domain, then 

      (i) Prove that  is measurable. 
      (ii) Prove that  is measurable, if  is a constant. Hence prove that  is 

measurable, if  and  are two constants. Deduce that  is measurable. 
 (b) If  is a real  valued measurable func�on defined on  and  is a con�nuous 

func�on, then prove that  is measurable.
18.1. (a) State and prove Monotone Convergence theorem.

 (b) State and prove Lebesgue Convergent theorem.
OR

     2. (a) If  and  are non-nega�ve measurable func�ons, prove the following
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    (i) ,  

     (ii) 
     (iii) If  a.e., then 

 
(b) Let  be a sequence of non-nega�ve measurable func�ons that converge to  and 
suppose  for all .  Then prove that .

19.1. (a) Let  be an extended real valued func�on defined on , where  is a 
measurable space. Then prove that 

 the following statements are equivalent:
      (i) 

      (ii) 
      (iii) 
      (iv) 
 (b) If  is a complete measure and  is a measurable func�on, then prove that  

a.e. implies  is measurable.
OR

     2. (a) Let  be a measuer space and  be a measurable func�on defined on  such 
that  is defined. Prove that the set func�on  defined on  by  is a 
signed measure.

 (b) Find a Hahn decomposi�on of  w.r.t. 
 (c) Find a Jordan decomposi�on of .

20.1. If  is an algebra, then prove that 
 

OR
     2. Let  and  be -finite measure spaces. For  , write 

 and  for all  and . Then prove that  is -
measurable and  is -measurable and .
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