\qquad

M. Sc. DEGREE END SEMESTER EXAMINATION - APRIL 2021
 SEMESTER 4 : MATHEMATICS

COURSE : 16P4MATT17EL ; MULTIVARIATE CALCULUS AND INTEGRAL TRANSFORMS
 (For Regular - 2019 Admission and Supplementary - 2018/2017/2016 Admissions)

Time : Three Hours

Max. Marks: 75

PART A

Answer All (1.5 marks each)

1. How Fourier integral differ from Fourier series.
2. Find the Laplace transform of $f(x)=e^{a t}$
3. Find the Laplace transform of sinhat
4. Show that total derivative of a linear function is the function itself.
5. If $f(x)=\left\|x^{2}\right\|$ then find $f^{\prime}(c ; u)$.
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a function given by $f(t)=(\cos t, \sin t)$. Show that the ordinary Mean Value theorem does not hold in $[0,2 \pi]$.
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be defined by $f(t)=(\cos t, \sin t)$ and $f^{\prime}(t)(u)=u(-\sin t, \cos t)$. Show that for every vector $a \in \exists^{\prime} z^{\prime} \in(0,2 \pi)$ such that $a .\{f(y)-f(x)\}=a .\left\{f^{\prime}(z)(y-x)\right\}$.
8. Show by an example that f need not be one-one on S even when $J_{f}(x) \neq 0 \forall x \in S$.
9. Define the term support
10. Define the term primitive mapping
$(1.5 \times 10=15)$
PART B
Answer any 4 (5 marks each)
11. Show that $\int_{0}^{\infty} \frac{x \sin a x}{1+x^{2}} d x=\frac{a}{|a|} \frac{\pi}{2} e^{-|a|}$, if $a \neq 0$.
12. Derive the exponential form of Fourier Integral Theorem
13. Assume f is differentiable at c with total derivative T_{c}. Then prove that the directional derivative $f^{\prime}(c ; u)$ exists for every u in R^{n} and we have $T_{c}(u)=f^{\prime}(c ; u)$.
14. Examine for extreme values $x^{2}+y^{2}+6 x+12$
15. State and prove a global property of functions with nonzero Jacobian determinant.
16. Find $J_{f}(r, \theta, z)$ where $f(r, \theta, z)$ is defined by $\left.x=r \cos \theta, y=r \sin \theta, z=z\right)$

PART C

Answer any 4 (10 marks each)

17.1. State and prove the convolution theorem for Fourier Transforms

OR

2. (i) Prove that $\frac{\Gamma(p) \Gamma(p)}{\Gamma(2 p)}=2 \int_{0}^{\frac{1}{2}} x^{p-1}(1-x)^{p-1} d x$.
(ii) Make a suitable change of variable in (i) to obtain
$\Gamma(2 p) \Gamma\left({ }^{1} / 2\right)=2^{2 p-1} \Gamma(p) \Gamma\left(p+\frac{1}{2}\right)$.
18.1. a)Derive the matrix form of Chain rule
b)Compute the gradient vector $\nabla f(x, y)$ at those points (x, y) in R^{2} where it exists
$f(x, y)=x y \sin \frac{1}{x^{2}+y^{2}} i f(x, y) \neq(0,0), f(0,0)=0$
OR
3. Assume that g is differentiable at a, with total derivative $g^{\prime}(a)$. Let $b=g(a)$ and assume that f is differentiable at b, with total derivative $f^{\prime}(b)$. Then prove that the composite function $h=f o g$ is differentiable at a, and the total derivative $h^{\prime}(a)$ is given by $h^{\prime}(a)=f^{\prime}(b) o g^{\prime}(a)$, the composition of the linear functions $f^{\prime}(b)$ and $g^{\prime}(a)$.
19.1. (a) State and prove second derivative test for extrema.
(b)Find and classify the extremum values of the function $f(x, y)=x^{2}+y^{2}+x+y+x y$.

OR
2. State and prove a sufficient condition for differentiability
20.1. State and prove the theorem on partition of unity

OR

2. Prove that if ω and λ are k - and m - forms respectively of class C^{\prime} in E, then $d(\omega \wedge \lambda)=(d \omega) \wedge \lambda+(-1)^{k} \omega \wedge d \lambda$ and if ω is of $C^{\prime \prime}$ in E, then $d^{2} \omega=0$.
