Reg. No	Name	17P117

M Sc DEGREE END SEMESTER EXAMINATION- NOVEMBER 2017 SEMESTER 1 : MATHEMATICS

COURSE: 16P1MATT02; BASIC TOPOLOGY

(Common for Regular - 2017 / Supplementary - 2016 Admissions)

Time: Three Hours Max. Marks: 75

Section A Answer all the questions (1.5 marks each)

- 1. Define discrete topology and trivial topology. When does a discrete topology coincide with a trivial topology?
- 2. When is a topological space said to be metrisable? Give an example.
- 3. Let (X,d) be a metric space and x,y distinct points in X. Show that there exists open sets U and V such that $x \in U, y \in V$ and $U \cap V = \phi$.
- 4. Prove that a constant function is always continuous.
- 5. Define a compact set A in a space (X, \mathcal{T}) . Give an example of a set that is not compact.
- 6. Let $X = \{x_1, \dots x_n\}$ be a topological space that contains only finitely many points.Is X compact? Explain.
- 7. Define a separated space with example.
- 8. Is the set of rational numbers connected? Justify.
- 9. Define (i) T_2 space (ii) Completely regular Space.
- 10. Prove that compact subsets in a Hausdorff space are closed.

 $(1.5 \times 10 = 15)$

Section B Answer any 4 (5 marks each)

- 11. Let X be a non empty set and $\mathscr{T}=\{G\subset X:X-G \text{is countable}\}\cup\{\phi\}$. Prove that \mathscr{T} is a topology on X.
- 12. Define metric topology. Prove that every metric space is a topological space, where the topology is metric topology.
- 13. Prove that every second countable space is separable.
- 14. Define a qoutient map. Show that every closed, surjective map is a quotient map.
- 15. Differentiate connectedness and locally connectedness with an example.
- 16. Show that every Tychonoff space is regular.

 $(5 \times 4 = 20)$

Section C Answer either 1 OR 2 of each question (10 marks each)

- 17.1. Let $\mathscr C$ be the family of all closed sets in a topological space $(X,\mathscr T)$, then $\mathscr C$ has the following properties:
 - (i) $\phi \in \mathscr{C}, X \in \mathscr{C}$.
 - (ii) \mathscr{C} is closed under arbitrary intersection.
 - (iii) \mathscr{C} is closed under finite union.

Conversly, given any set X and a family $\mathscr C$ of its subsets which satisfies the above three properties, then there exist a unique topology $\mathscr T$ on X such that $\mathscr C$ coincides with the family of closed subsets of $(X,\mathscr T)$.

OR

- 2. (a)Let X be a set, $\mathscr T$ a toplogy on X and S a family of subsets of X. Show that S is a subbase for $\mathscr T$ if and only if S generates $\mathscr T$.
 - (b) If (X, \mathcal{T}) is second countable and $Y \subset X$, then show that any cover of Y by members of \mathcal{T} has a countable subcover.
- 18.1. (a) Let $[(X_i,\mathscr{T}_i),i=1,2,\dots n]$ be a collection of topological spaces and (X,\mathscr{T}) their topological product. Prove that each projection π_i is continuous. Also show that if Z is any space then the fuction $f:Z\to X$ is continuous if and only if $\pi_i of:Z\to X_i$ is continuous for all $i=1,2,\dots n$.
 - (b) Sate and prove lebesgue covering lemma.

OR

- 2. (a) State and prove lebesgue covering lemma.(b)Prove that every second countable space is first countable.
- 19.1. (a) Prove that every closed and bounded interval is compact. (b) Show that union of collection of connected subsets of X having a common point is connected.

OR

- 2. (a) Prove that a subset of R is connected if it is an interval.(b) Prove that every closed and bounded interval is compact.
- 20.1. (a) Define T_4 and prove that all metric spaces are $T_4.$
 - (b)Prove that every regular lindeloff space is normal.

OR

- 2. (a)Show that the axioms T_0, T_1, T_2, T_3 and T_4 form a hierarchy of progressively stronger condition.
 - (b) Every continuous, one to one function from a compact space onto a Hausdorff space is an embedding.

 $(10 \times 4 = 40)$