\qquad

M. Sc. DEGREE END SEMESTER EXAMINATION - APRIL 2021
 SEMESTER 4 : MATHEMATICS

COURSE : 16P4MATT16EL : DIFFERENTIAL GEOMETRY
(For Regular - 2019 Admission \& Supplementary - 2018/2017/2016 Admissions)
Time : Three Hours
Max. Marks: 75

PART A

Answer any 10 (1.5 marks each)

1. Describe the graphs and level sets(level curves) of $f\left(x_{1}, x_{2}\right)=x_{1}$.
2. Define Smooth Vector Field.
3. Sketch the vector field on $\mathbb{R}^{2}: \mathbb{X}(p)=(p, X(p))$ where $X\left(x_{1}, x_{2}\right)=\left(x_{2},-x_{1}\right)$.
4. Find the velocity, the acceleration, and the speed of parametrized curve $\alpha(t)=\left(t, t^{2}\right)$
5. Define covariant derivative of a parallel vector field.
6. Define Gauss map
7. Define parametrization of a segment of the plane curve C containing p.
8. Define the length of a parameterised curve.
9. Let f and g be two smooth functions on the open set $J \subset R^{n+1}$ show that $d(f+g)=d f+d g$.
10. State inverse function theorem for n-surface.
$(1.5 \times 10=15)$

PART B

Answer any 4 (5 marks each)
11. Find the integral curve through $p=\left(x_{1}, x_{2}\right)=(1,1)$ of the vector field $\mathbb{X}(p)=\left(p, x_{2},-x_{1}\right)$.
12. State and prove the existence of Lagrange multiplier.
13. Let S be a 2 -surface in \mathbb{R}^{3} and let $\alpha: I \rightarrow S$ be a geodesic in S with $\dot{\alpha} \neq 0$. Prove that a vector field \mathbb{X} tangent to S along α is parallel along α if and only if both $\|\mathbb{X}\|$ and the angle between \mathbb{X} and α are constant along α.
14. Let U be an open set in \mathbb{R}^{n+1} and let $f: U \rightarrow \mathbb{R}$ be a smooth function. Show that $\nabla_{e_{i}} f=\left(\partial f / \partial x_{i}\right)(p)$ where $p \in U$ and $e_{i}=(p, 0 \ldots, 1, \ldots, 0)$.
15. Find the curvature κ of the plane curve $f^{-1}(c)$, oriented by $\nabla f /\|\nabla f\|$ where $f\left(x_{1}, x_{2}\right)=a x_{1}+b x_{2}, \quad(a, b) \neq(0,0)$.
16. Let V be a finite dimensional vector space with dot product and let $L: V \rightarrow V$ be a selfadjoint linear transformation on V. Let $S=\{v \in V: v \cdot v=1\}$ and define $f: S \rightarrow \mathbb{R}$ by $f(v)=L(v) \cdot v$. Suppose f is staionary at $v_{0} \in S$. Prove that $L\left(v_{0}\right)=f\left(v_{0}\right) v_{0}$.
(5 x $4=20$)

PART C

Answer any 4 (10 marks each)
17.1. Let U be an open set in \mathbb{R}^{n+1} and let $f: U \rightarrow \mathbb{R}$ be smooth. Let $p \in U$ be a regular point of f, and let $c=f(p)$. Prove that the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $[\nabla f(p)]^{\perp}$.

OR

2. Consider the vector field $\mathbb{X}\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}, x_{2}, x_{1}\right)$ on \mathbb{R}^{2}. For $t \in \mathbb{R}$ and $p \in \mathbb{R}^{2}$, let $\varphi_{t}(p)=\alpha_{p}(t)$ where α_{p} is the maximal integral curve of \mathbb{X} through p. Prove that $t \mapsto \varphi_{t}$ is a homomorphism from the additive group of real numbers into the group of one to one transformations of the plane.
18.1. Let S be an n-surface in \mathbb{R}^{n+1}, let $p, q \in S$, and let α be a piecewise smooth parametrized curve from p to q. Prove that the parallel transport $P_{\alpha}: S_{p} \rightarrow S_{q}$ along α is a vector space isomorphism which preserves dot products.

OR

2. Let S be a compact connected oriented n-surface in \mathbb{R}^{n+1} exhibited as a level set $f^{-1}(c)$ of a smooth function $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ with $\nabla f(p) \neq 0 \forall p \in S$. Prove that the Gauss map maps S onto the unit sphere S^{n}.
19.1. Prove that the Weingarten map Lp is self-adjoint.

OR

2. Let η be the 1 -form on $\mathbb{R}^{2}-\{0\}$ defined by $\eta=-\frac{x_{2}}{x_{1}^{2}+x_{2}^{2}} d x_{1}+\frac{x_{1}}{x_{1}^{2}+x_{2}^{2}} d x_{2}$. Prove that for $\alpha:[a, b] \rightarrow \mathbb{R}^{2}-\{0\}$ any closed piecewise smooth parameterized curve in $\mathbb{R}^{2}-\{0\}, \int_{\alpha} \eta=2 \pi k$ for some integer k.
20.1. (i) Find the Gaussian curvature of $\phi(t, \theta)=(\cos \theta, \sin \theta, t)$
(ii) Prove that on each compact oriented n-surface S in \mathbb{R}^{n+1} there exists a point p such that the second fundamental form at p is definite.

OR

2. Let S be an oriented n-surface in \mathbb{R}^{n+1} and let \mathbf{v} be a unit vector in $S_{p}, p \in S$. Then prove that
(i) There exists an open set $V \subset \mathbb{R}^{n+1}$ containing p such that $S \cap \mathcal{N}(\mathbf{v}) \cap V$ is a plane curve.
(ii) The curvature at p of this curve is equal to the normal curvature $k(v)$.
