M. Sc. DEGREE END SEMESTER EXAMINATION - APRIL 2021

SEMESTER 4: MATHEMATICS

COURSE: 16P4MATT16EL: DIFFERENTIAL GEOMETRY

(For Regular - 2019 Admission & Supplementary - 2018/2017/2016 Admissions)

Time : Three Hours Max. Marks: 75

PART A

Answer any 10 (1.5 marks each)

- 1. Describe the graphs and level sets(level curves) of $f(x_1, x_2) = x_1$.
- 2. Define Smooth Vector Field.
- 3. Sketch the vector field on $\mathbb{R}^2: \mathbb{X}(p)=(p,X(p))$ where $X(x_1,x_2)=(x_2,-x_1)$.
- 4. Find the velocity, the acceleration, and the speed of parametrized curve $\alpha(t)=(t,t^2)$
- 5. Define covariant derivative of a parallel vector field.
- 6. Define Gauss map
- 7. Define parametrization of a segment of the plane curve C containing p.
- 8. Define the length of a parameterised curve.
- 9. Let f and g be two smooth functions on the open set $J\subset R^{n+1}$ show that d(f+g)=df+dg.
- 10. State inverse function theorem for n-surface.

 $(1.5 \times 10 = 15)$

PART B

Answer any 4 (5 marks each)

- 11. Find the integral curve through $p=(x_1,x_2)=(1,1)$ of the vector field $\mathbb{X}(p)=(p,x_2,-x_1).$
- 12. State and prove the existence of Lagrange multiplier.
- 13. Let S be a 2-surface in \mathbb{R}^3 and let $\alpha:I\to S$ be a geodesic in S with $\dot{\alpha}\neq 0$. Prove that a vector field \mathbb{X} tangent to S along α is parallel along α if and only if both $\|\mathbb{X}\|$ and the angle between \mathbb{X} and α are constant along α .
- 14. Let U be an open set in \mathbb{R}^{n+1} and let $f:U\to\mathbb{R}$ be a smooth function. Show that $\nabla_{e_i} f=(\partial f/\partial x_i)\,(p)$ where $p\in U$ and $e_i=(p,0\,\ldots,1,\ldots,0)$.
- 15. Find the curvature κ of the plane curve $f^{-1}(c)$, oriented by $\nabla f/\|\nabla f\|$ where $f(x_1,x_2)=ax_1+bx_2,\quad (a,b)\neq (0,0)$.
- 16. Let V be a finite dimensional vector space with dot product and let $L:V\to V$ be a self-adjoint linear transformation on V. Let $S=\{v\in V:v\cdot v=1\}$ and define $f:S\to \mathbb{R}$ by $f(v)=L(v)\cdot v$. Suppose f is staionary at $v_0\in S$. Prove that $L(v_0)=f(v_0)v_0$.

 $(5 \times 4 = 20)$

PART C

Answer any 4 (10 marks each)

17.1. Let U be an open set in \mathbb{R}^{n+1} and let $f:U\to\mathbb{R}$ be smooth. Let $p\in U$ be a regular point of f, and let c=f(p). Prove that the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $[\nabla f(p)]^{\perp}$.

OR

2. Consider the vector field $\mathbb{X}(x_1,x_2)=(x_1,x_2,x_2,x_1)$ on \mathbb{R}^2 . For $t\in\mathbb{R}$ and $p\in\mathbb{R}^2$, let $\varphi_t(p)=\alpha_p(t)$ where α_p is the maximal integral curve of \mathbb{X} through p. Prove that $t\mapsto \varphi_t$ is a homomorphism from the additive group of real numbers into the group of one to one transformations of the plane.

18.1. Let S be an n-surface in \mathbb{R}^{n+1} , let $p,q\in S$, and let α be a piecewise smooth parametrized curve from p to q. Prove that the parallel transport $P_\alpha:S_p\to S_q$ along α is a vector space isomorphism which preserves dot products.

OR

- 2. Let S be a compact connected oriented n-surface in \mathbb{R}^{n+1} exhibited as a level set $f^{-1}(c)$ of a smooth function $f:\mathbb{R}^{n+1}\to\mathbb{R}$ with $\nabla f(p)\neq 0 \ \ \forall p\in S$. Prove that the Gauss map maps S onto the unit sphere S^n .
- 19.1. Prove that the Weingarten map Lp is self-adjoint.

OR

- 2. Let η be the 1-form on $\mathbb{R}^2-\{0\}$ defined by $\eta=-\frac{x_2}{x_1^2+x_2^2}dx_1+\frac{x_1}{x_1^2+x_2^2}dx_2$. Prove that for $\alpha:[a,b]\to\mathbb{R}^2-\{0\}$ any closed piecewise smooth parameterized curve in $\mathbb{R}^2-\{0\}$, $\int\limits_{\alpha}\eta=2\pi k$ for some integer k.
- 20.1. (i) Find the Gaussian curvature of $\phi(t, heta) = (\cos heta, \sin heta, t)$
 - (ii) Prove that on each compact oriented n-surface S in \mathbb{R}^{n+1} there exists a point p such that the second fundamental form at p is definite.

OR

- 2. Let S be an oriented n-surface in \mathbb{R}^{n+1} and let \mathbf{v} be a unit vector in $S_p, \ p \in S$. Then prove that
 - (i) There exists an open set $V\subset\mathbb{R}^{n+1}$ containing p such that $S\cap\mathcal{N}(\mathbf{v})\cap V$ is a plane curve.
 - (ii) The curvature at p of this curve is equal to the normal curvature k(v).

(10 x 4 = 40)