Reg.	No	Name	17P103

M Sc DEGREE END SEMESTER EXAMINATION- NOVEMBER 2017 SEMESTER 1 : MATHEMATICS

COURSE: **16P1MATT01**; **LINEAR ALGEBRA** (For Regular - 2017 / Supplementary - 2016 Admissions)

Time: Three Hours Max. Marks: 75

Section A Answer all the questions (1.5 marks each)

- 1. Is the set of vectors $\alpha=(a_1,\ldots,a_n)\in\mathbb{R}^n$ such that a_2 is rational a subspace of \mathbb{R}^n ?
- 2. Show that the set of all 2×2 symmetric matrices over a field F is a subspace of the space of all $n \times n$ matrices over F.
- 3. Let V be the (real) vector space of all functions f from $\mathbb R$ into $\mathbb R$. Is the set of all functions f such that f(-1)=0 a subspace of V?
- 4. Define linear functional. Give an example.
- 5. Describe the range and null space of the differentiation transformation defined on the vector space of polynomials of degree less than or equal to n.
- 6. Show that a linear tranformation from $T:\mathbb{R}^n \to \mathbb{R}^n$ is one-one if and only if it is onto.
- 7. Define alternating n-linear function.
- 8. Show that similar matrices have the same characteristic polynomial.
- 9. Define minimal polynomial for a linear operator T on a finite dimensional vector space V. State three properties which characterize the minimal polynomial.
- 10. Find a 3×3 matrix for which the minimal polynomial is x^2 .

 $(1.5 \times 10 = 15)$

Section B Answer any 4 (5 marks each)

- 11. Define subspace of a vector space V. Show that a non-empty subset W of V is a subspace of V if and only if for each pair of vectors α, β in W and each scalar c in F the vector $c\alpha + \beta$ is again in W.
- 12. Let V be a vector space which is spanned by a finite set of vectors β_1, \ldots, β_m . Show that any independent set of vectors in V is finite and contains no more than m elements.
- 13. Let W be the subspace of \mathbb{R}^5 which is spanned by the vectors (2,-2,3,4,-1),(0,0,-1,-2,3),(-1,1,2,5,2),(1,-1,2,3,0). Determine a basis for the annihilator of W° .
- 14. Show that $\{(1,2),(3,4)\}$ is a basis for \mathbb{R}^2 . Let T be the unique linear transformation from \mathbb{R}^2 to \mathbb{R}^3 such that T(1,2)=(3,2,1) and T(3,4)=(6,5,4). Find T(1,0)
- 15. Let A be an n imes n matrix with λ as an eigen value. Show that, (a) $k+\lambda$ is an eigen value of A+kI. (b) If T is non-singular, $\frac{1}{\lambda}$ is an eigen value of A^{-1} .

16. Let V be a finite-dimensional nvector space over the field F and let T be a linear operator on V. Prove that T is diagonalizable if and only if the minimal polynomial for T is of the form $(x-c_1)(x-c_2)\dots(x-c_k)$, where the $c_i\in F$ are distinct.

 $(5 \times 4 = 20)$

Section C Answer either 1 OR 2 of each question (10 marks each)

- 17.1. Let W be the subspace of \mathbb{C}^3 spanned by $lpha_1=(1,0,i)$ and $lpha_2=(1+i,1,-1).$
 - (a) Show that $lpha_1$ and $lpha_2$ form a basis for W.
 - (b) Show that the vectors $eta_1=(1,1,0)$ and $eta_2=(1,i,1+i)$ are in W and form another basis for W .
 - (c) What are the coordinates of α_1 and α_2 in the ordered basis $\{\beta_1,\beta_2\}$ for W? OR
 - 2. Let V be the vector space of all 2×2 matrices over the field F.Let W_1 be the set of matrices of the form $\begin{bmatrix} x & -x \\ y & z \end{bmatrix}$ and let W_2 be the set of matrices of the form $\begin{bmatrix} a & b \\ -a & c \end{bmatrix}$. Prove that W_1 and W_2 are subspaces of V. Also find the dimensions of W_1 , W_2,W_1+W_2 and $W_1\cap W_2$.
- 18.1. Let V be a finite dimensional vector space over the field F, and let W be a subspace of V.
 - (a) Show that $dim \, W + dim \, W^\circ = dim \, V$.
 - (b) Show that if W is a k-dimensional subspace of an n-dimensional vector space V, then W is the intersection of (n-k) hyperspaces in V.

OR

- 2. (a) Let V be an n-dimensional vector space over the field F and let W be an m-dimensional vector space over F. Prove that L(V,W) is finite dimensional and has dimension mn.
 - (b) Let f is a non-zero linear functional on the vector space V. Prove that the null space of f is a hyperspace in V. Also prove that every hyperspace in V is the null spce of a non-zero linear functional on V.
- 19.1. (a) Let T and U be linear operators on the finite dimensional vector space V. Prove that (i) det $(TU)=(\det T)$ (det U)
 - (ii) Define orthogonal matrix.If A is orthogonal, show that $\det A=\pm 1$. Give an example of an orthogonal matrix for which $\det A=-1$.
 - (b) If A is an invertible n imes n matrix over a field F , show that $\det A
 eq 0$.

OR

- 2. Let A be an $n \times n$ matrix over the field F. Show that A is invertible over F if and only if $\det A \neq 0$. When A is invertible, show that $A^{-1} = [\det(A)]^{-1}$. Adj A, where Adj A is the adjoint of A.
- 20.1. Let T be a linear operator on a finite-dimensional vector space V. Let c_1, c_2, \ldots, c_k be the distinct characteristic values of T and let W_i be the null space of $(T-c_iI)$. Show that the following are equivalent.
 - (a) T is diagonalizable.
 - (b) The characteristic polynomial for T is $f=(x-c_1)^{d_1}\dots(x-c_k)^{d_k}$ and dim $W_i=d_i, i=1,2,\dots,k.$
 - (c) dim W_1 +. . .+ dim W_k =dim V

OR

2. Let T be a linear operator on the finite dimensional vector space V. Let c_1,\ldots,c_k be the distinct characteristic values of T and let W_i be the characteristic space associated with the characteristic value c_i . If $W=W_1+\ldots+W_2+\ldots+W_k$, show that $\dim W = \dim W_1 + \dim W_2 + \ldots + \dim W_k$.

 $(10 \times 4 = 40)$