M. Sc DEGREE END SEMESTER EXAMINATION - JULY 2021

SEMESTER 2 : MATHEMATICS

COURSE : 16P2MATT09 : FUNCTIONAL ANALYSIS

(For Regular - 2020 Admission & Supplementary - 2019/2018/2017/2016 Admissions)

Time : Three Hours

Max. Marks: 75

PART A

Answer All (1.5 marks each)

1. If $T:D(T) \to Y$ is a bounded linear operator (where $D(T) \subset X$ and X and Y are normed spaces), then prove that

$$x_n o x ext{ implies } Tx_n o Tx(x_n \in D(T))$$

- 2. Prove that the inner product is conjugate linear in the second argument.
- 3. State and prove the Parallelogram equality in an inner product space.
- 4. If $x \neq 0, y \neq 0$ and $x \perp y$, then prove that $\{x, y\}$ is linearly independent.
- 5. Define the orthogonal complement of a closed subspace Y of a Hilbert space H.
- 6. If Y is a closed subspace of a Hilbert space H, prove that $Y \cap Y^{\perp} = \{0\}$.
- 7. If M is a non-empty subset of an inner product space, prove that $M \subset M^{\perp \perp}$.
- 8. If H is a Hilbert space, prove that $M^{\perp} = \{0\}$ implies M is total in H.
- 9. Prove that R under usual ` \leq ' is a totally ordered set.
- 10. Show that a sub linear functional p on a vector space X satisfies

$$p(0)=0 ext{ and } p(-x) \geq -p(x)$$

 $(1.5 \times 10 = 15)$

PART B

Answer any 4 (5 marks each)

- 11. Prove that $\{x_1, x_2, \dots, x_n\}$, where $x_i(t) = t^j$, is a linearly independent set in C[a, b].
- 12. Show that the operator $T:l^\infty
 ightarrow l^\infty$ be defined by

$$y=(\eta_j)=Tx:\eta_j=rac{\xi_j}{j},x=(\xi_j)\,,$$

is linear and bounded.

a. Define the algebraic reflexivity of a vector spaceb. Prove that a finite dimensional vector space is algebraically reflexive.

- 14. Let Y be a subspace of a Hilbert space H. Then prove that Y is complete if and only if Y is closed in H.
- 15. If a Hilbert space H contains a total orthonormal sequence, then prove that H is separable.
- 16. Prove that, if $x \in X$ and X is a normed space, then $||x|| = \sup_{\substack{f \in X' \\ f \neq 0}} rac{|f(x)|}{||f||}$. Hence prove that, if $x_0 \in X$

is such that $f(x_0)=0$ for all $f\in X'$, then $x_0=0$

(5 x 4 = 20)

PART C

Answer any 4 (10 marks each)

- 17.1. a. State and prove Riesz's Lemma.
 - b. In a finite dimensional normed space X, prove that any set $M \subset X$ is compact if and only if M is closed and bounded.

- a. Prove that dot product with a fixed vector $a \in R^3$ is a linear functional on R^3 . Also prove that cross product with `a' is a linear operator on R^3 . Will it be bounded? Justify.
 - b. Let $T : X \to Y$ be a linear operator. Show that the image of a subspace V of X is a vector space. Also prove that if $(T^{-1}: Y \setminus X)$ exists, then the inverse image of a subspace W of Y is a vector space.
 - c. Prove that a continuous mapping T of a compact subset M of a metric space X into R assumes a maximum and a minimum value at some points of M.
- 18.1. a. If Y is a Banach space and X is a normed space, prove that B(X, Y) is a Banach space. Hence, prove that the dual space X' of a normed space X is a Banach space.
 - b. Prove that the dual space of R^n is R^n .

2.

OR

- a. Let Y be a subspace of a Hilbert space H. Then prove that:
 (i) If Y is finite dimensional, then Y is complete.
 (ii) If H is separable, so is Y.
 - b. Show that for a sequence (x_n) is an inner product space X the conditions

 $\|x_n\| o \|x\| ext{ and } \langle x_n, x
angle o \langle x, x
angle$

imply the convergence $x_n \to x$.

- 19.1. a. An orthogonal set M in a Hilbert space H is total in H if and only if for all $x \in H$, the parseval relation holds.
 - b. Prove that two Hilbert spaces H and \tilde{H} are isomorphic if and only if they have the same Hilbert dimension.

OR

2. a. Let T: H o H be a bijective bounded linear operator on a Hilbert space H. If T^{-1} is also bounded , prove that $(T^*)^{-1}$ exists and

$$(T^{*})^{-1} = (T^{-1})^{*}$$

- b. Prove that a linear operator T on a complex Hilbert space H is unitary if and only if T is isometric and subjective.
- 20.1. a. Define a sub linear functional on a real vector space Xb. State and prove Hahn Banach theorem for a real vector space.

OR

- 2. a. Let Y be a proper closed subspace of a normed space X. Let $x_0 \in X-Y$ and
 - $\delta = \inf_{ ilde{y} \in Y} \| ilde{y} x_0 \|.$ Then prove that there exists an $ilde{f} \, \in X'$ such that

$$\| ilde{f}\,\|=1, ilde{f}\,(y)=0$$
 for all $y\in Y$ and $ilde{f}\,(x_0)=\delta_Y$

b. Under the same assumptions as above, prove that there exists a bounded linear functional \boldsymbol{h} on \boldsymbol{X} such that

$$\|h\|=rac{1}{\delta}, h(y)=0 ext{ for all } y\in Y$$

and $h(x_0) = 1$.

 $(10 \times 4 = 40)$