M. Sc DEGREE END SEMESTER EXAMINATION - OCT 2020 : FEBRUARY 2021

SEMESTER 1 : CHEMISTRY / PHARMACEUTICAL CHEMISTRY

COURSE : 16P1CHET04 / 16P1CPHT04 : QUANTUM CHEMISTRY AND GROUP THEORY

(For Regular - 2020 Admission and Supplementary - 2016/2017/2018/2019 Admissions)

Time : Three Hours

Max. Marks: 75

PART A

Answer any 10 (2 marks each)

- 1. In molecules with center of symmetry, IR active vibrations are not Raman active. Explain
- 2. Is it possible to find the symmetries of bending vibrations and stretching vibrations of a molecule separately? Explain
- 3. Deduce the matrix representation for reflection about the xy, xz planes and find their prodcut.
- 4. Write the multiplication table for C_3 point group? What type of point group is it?
- 5. What are direct product representations of a point group? Illustrate with C_{2v} point group
- 6. Whether d/dx and d/dy commute with each other. Justify your answer
- 7. Calculate the expectation value of energy of a particle in 1 D box described by the wave function $(2/a)^{1/2} \sin(n\pi x/a)$.
- 8. What is a well behaved function? Explain
- 9. Discuss the physical origin of quantisation of energy for a particle confined to move in a onedimensional box.
- 10. Define zero-point energy. Provide an example for zero-point energy.
- 11. For butadiene, $CH_2=CH-CH=CH_2$, take the box length as 7.0 A° and apply the free electron model to estimate the wavelength of light absorbed when a pi electron is excited from the highest occupied to the lowest vacant box level.
- 12. For a particle in a cubic box, what is the degree of degeneracy of the energy levels with the following values of $h^2 / 8ma^2$? (a) 9 (b) 12 (c) 14 (d) 27
- 13. State Uhlenbeck and Goudsmit electron spin postulates in quantum mechanics.

(2 x 10 = 20)

PART B Answer any 5 (5 marks each)

- 14. Determine the symmetries of the vibrational modes of NH₃ molecules using cartesian coordinates
- 15. Prove the mutual exclusion principle using the given reducible representations of trans N_2F_2 and trans dichloro ethylene molecules

C _{2h}	E	C ₂	i	бxz
$\Gamma(R) - N_2F_2$	12	0	0	4
$\Gamma(R)$ – trans dichloro ethylene	18	0	0	6

- 16. What are reducible and irreducible representations of a group? Find a reducible representation of the group by taking p orbitals of 1,3 butadiene molecule.
- 17. Derive the group multiplication table for C_{3V} point group.
- 18. Solve the Schrödinger wave equation for a particle in one-dimensional box
- 19. Point out the similarities and differences between the one-dimensional particle-in-a box and the harmonic-oscillator wavefunctions and energies.

- 20. The force constant of ⁷⁹Br⁷⁹Br is 240 Nm⁻¹. Calculate the fundamental vibrational frequency and zero-point energy of Br-Br, approximating the molecular vibration as that of a harmonic oscillator.
- 21. Discuss the radial and angular Schrodinger equation of hydrogen atom depend on the variables r, θ , ϕ and its solutions

(5 x 5 = 25)

PART C

Answer any 2 (15 marks each)

- 22. Explain the symmetry selection rules for IR and Raman Spectra. What is the significance of third and fourth area of character table of a point group in spectroscopy. Determine the IR and Raman Active vibrational modes of ammonia molecule using character table.
- 23. What are character tables? State the theorem concerning the irreducible representations of a group. And use the theorem to derive the character table for C_{2v} point group.
- 24. Solve the Schrödinger equation for a rigid rotator. Discuss the results.
- 25. Solve the Schrodinger equation for hydrogen atom . Discuss the solutions in detail

(15 x 2 = 30)