\qquad Name.

B.Sc. DEGREE END SEMESTER EXAMINATION OCTOBER 2017
 SEMESTER -5: MATHEMATICS (CORE COURSE)
 COURSE: 15U5CRMAT6-15U5CRCMT6: DIFFERENTIAL EQUATIONS

[Common for B.Sc. Mathematics and B.Sc. Computer Applications]
(For Regular 2015 admission)
Time: Three Hours
Max. Marks: 75

PART A

Answer all questions. Each question carries 1 mark.

1. Find the value of b for which the equation $\left(x y^{2}+b x^{2} y\right) d x+(x+y) x^{2} d y=0$ is exact.
2. Solve the differential equation $y^{\prime}=1+y^{2}$.
3. Write the Bernoulli's differential equation.
4. Find the Wronskian of $e^{\lambda_{1} x}, e^{\lambda_{2} x}$.
5. Verify that the function $y=\sqrt{2} \cos x+9 \sin x$ is a solution of the homogeneous linear differential equation $y^{\prime \prime}+y=0$.
6. Solve $y^{\prime \prime}-4 y^{\prime}+4 y=0$.
7. Write Bessel's equation.
8. Find the singular points of the differential equation $2 x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+(x-5) y=0$.
9. Form a partial differential equation by eliminating the arbitrary constants from

$$
z=a x+b y+a^{2}+b^{2}
$$

10. Write the general solution of Lagrange's equation.

PART B

Answer any eight questions. Each question carries 2 marks.
11. Prove that $\mu(x, y)=x$ is an integrating factor of the differential equation $\left(3 x y+y^{2}\right)+\left(x^{2}+x y\right) y^{\prime}=0$.
12. Obtain the general solution of the equation $16 y^{\prime \prime}-8 y^{\prime}+145 y=0$.
13. Find the orthogonal trajectories of the family of parabolas $y=c x^{2}$.
14. Given that $e^{-x}, e^{3 x}$ and $e^{4 x}$ are all solutions of $y^{\prime \prime \prime}-6 y^{\prime \prime}+5 y^{\prime}+12 y=0$. Show that they are linearly independent on the interval $-\infty<x<\infty$ and write the general solution.
15. Solve the equation $x \sin y d x+\left(x^{2}+1\right) \cos y d y=0$.
16. Find the general solution of $\frac{d^{4} y}{d x^{4}}+\frac{d^{2} y}{d x^{2}}=0$.
17. Show that $J_{0}(k x)$, where k is a constant satisfies the differential equation

$$
x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+k^{2} x y=0 .
$$

18. Transform the single linear differential equation $\frac{d^{2} x}{d t^{2}}-3 \frac{d x}{d t}+2 x=t^{2}$ into a system of first order differential equations.
19. Write a set of parametric equations of a surface $x^{2}+y^{2}+z^{2}=a^{2}$.
20. Find a differential equation of all spheres of fixed radius having their centres in the $x y$ plane.

PART C

Answer any five questions. Each question carries 5 marks.
21. Solve the initial value problem $\left(x^{2}+1\right) \frac{d y}{d x}+4 x y=x, y(2)=1$.
22. Solve $(x+2 y+3) d x+(2 x+4 y-1) d y=0$.
23. Given that $y=x$ is a solution of $\left(x^{2}+1\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0$ then find a linearly independent solution by reducing the order.
24. Solve $\frac{d^{3} y}{d x^{3}}+\frac{d y}{d x}=2 x^{2}+4 \sin x$.
25. Find a power series solution in powers of x of the differential equation $y^{\prime \prime}+x y^{\prime}+y=0$.
26. Show that $\frac{d}{d x}\left[x^{n} J_{n}(x)\right]=x^{n} J_{n-1}(x)$.
27. Find the general integral of $x(y-z) p+y(z-x) q=z(x-y)$.

PART D

Answer any two questions. Each question carries 12 marks.
28. Define an oblique trajectory. Find a family of oblique trajectories that intersect the family of straight lines $y=c x$ at angle 45°.
29. Find the particular integral of the equation $\left(x^{2}+1\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=6\left(x^{2}+1\right)^{2}$ by the method of variation of parameters, given that $y=x$ and $y=x^{2}-1$ are linearly independent solutions of the corresponding homogeneous equation.
30. Solve the Bessel's equation of order p.
31. (i) Find the integral curves of the equation $\frac{d x}{x+z}=\frac{d y}{y}=\frac{d x}{z+y^{2}}$.
(ii) Find the general solution of the differential equation $x^{2} \frac{\partial z}{\partial x}+y^{2} \frac{\partial z}{\partial y}=(x+y) z$.
$(12 \times 2=24)$

