Re	eg. NoName	18U542
B.Sc. DEGREE END SEMESTER EXAMINATION OCTOBER/NOVEMBER 2018		
SEMESTER -5: PHYSICS (CORE COURSE)		
COURSE: 15U5CRPHY08: DIGITAL ELECTRONICS		
(Common for Regular 2016 admission & Supplementary 2015 & 2014 admissions)		
Tin	ne: Three Hours	Max. Marks: 60
	PART A (Very short answer questions)	
	Answer all questions. Each question carries 1 Mark	
1.	is the radix of decimal number system.	
2.	Why binary numbers are used in digital electronic systems?	
3.	State De - Morgan's theorems.	
4.	What is a flip flop?	
5.	Draw the logic symbol and truth table of a NOR gate.	
6.	What is a multiplexer?	
7.	Define the term 'minterm'.	
8.	What is meant by propagation delay in a digital circuit?	
9.	Why synchronous counters are named so?	
10.	. How can you convert an SR flip flop to a D flip flop?	$(1 \times 10 = 10)$
PART B (Short answer questions)		
	Answer any Seven questions. Each question carries 2 Marks	
11.	. Convert the octal number 6327.4051 to its decimal equivalent.	
12.	. Implement the logic gates for the following expressions:	
	(a) AB + BCD (b) AB + BCD + EFGH	
13.	. Why Karnaugh maps are used in Boolean algebra?	
14.	. Differentiate between combinational logic circuits and sequential logic circuits.	
15.	. Write a comparative note on DTL and TTL logic families.	
16.	. What is a half adder? In what feature(s) is it different from a full adder?	

- 1

- 17. Draw the logic circuit, logic symbol and truth table of a D flipflop.
- 18. What are digital registers? What are their uses?
- 19. Explain the terms rising edge, falling edge, rise time and pulse width. $(2 \times 7 = 14)$

PART C (Problem/Derivations)

Answer **any Four** questions; each question carries **4** marks

- 20. What is meant by Coding in digital electronics? Write short note on BCD and ASCII codes.
- 21. Simplify the following using Boolean algebra

(a)
$$(A+B)(A+\overline{B})$$
 (b) $(A+B)(A+\overline{B})(\overline{A}+\overline{C})$

22. Convert the following expression to the other conical form

$$F(A,B,C,D) = \Pi_M (0,1,2,3,4,6,12)$$

- 23. Illustrate how a JK flip flop can be converted into a
 - (a) D flip flop
- (b) T flip flop
- 24. With a neat diagram explain the working of a 4 bit parallel adder.
- 25. Explain the working of a 4 to 1 multiplexer.

and

 $(4 \times 4 = 16)$

PART D (Long answer questions)

Answer **any two** questions; each question carries **10** marks

- 26. What are 1's complements and 2's complements of a binary number? Find the 1's and 2's complements of the following numbers
 - (a) 20
- (b) 35
- (c) 28
- 27. (a) What are Karnaugh maps? How a Karnaugh map is constructed?
 - (b) How a Boolean expression is implemented in a Karnaugh map?
 - (c) How a truth table is implemented in a Karnaugh map?
 - (d)How a Boolean expression simplified in a Karnaugh map?
- 28. What are Registers? Discuss in detail the working of Shift left and Shift right registers.
- 29. Discuss the construction and working of a counter type ADC.

 $(10 \times 2 = 20)$
