B.Sc. DEGREE END SEMESTER EXAMINATION OCTOBER/NOVEMBER 2018 SEMESTER -5: PHYSICS (CORE COURSE)
 COURSE: 15U5CRPHY08: DIGITAL ELECTRONICS
 (Common for Regular 2016 admission \& Supplementary 2015 \& 2014 admissions)

Time: Three Hours
Max. Marks: 60
PART A (Very short answer questions)
Answer all questions. Each question carries 1 Mark

1. \qquad is the radix of decimal number system.
2. Why binary numbers are used in digital electronic systems?
3. State De - Morgan's theorems.
4. What is a flip flop?
5. Draw the logic symbol and truth table of a NOR gate.
6. What is a multiplexer?
7. Define the term 'minterm'.
8. What is meant by propagation delay in a digital circuit?
9. Why synchronous counters are named so?
10. How can you convert an SR flip flop to a D flip flop?

PART B (Short answer questions)
Answer any Seven questions. Each question carries 2 Marks
11. Convert the octal number 6327.4051 to its decimal equivalent.
12. Implement the logic gates for the following expressions:
(a) $A B+B C D$
(b) $A B+B C D+E F G H$
13. Why Karnaugh maps are used in Boolean algebra?
14. Differentiate between combinational logic circuits and sequential logic circuits.
15. Write a comparative note on DTL and TTL logic families.
16. What is a half adder? In what feature(s) is it different from a full adder?
17. Draw the logic circuit, logic symbol and truth table of a D flipflop.
18. What are digital registers? What are their uses?
19. Explain the terms rising edge, falling edge, rise time and pulse width.

PART C (Problem/Derivations)
Answer any Four questions; each question carries 4 marks
20. What is meant by Coding in digital electronics? Write short note on BCD and ASCII codes.
21. Simplify the following using Boolean algebra
(a) $(A+B)(A+\bar{B})$
(b) $(A+B)(A+\bar{B})(\bar{A}+\bar{C})$
22. Convert the following expression to the other conical form
$F(A, B, C, D)=\Pi_{M}(0,1,2,3,4,6,12)$
23. Illustrate how a JK flip flop can be converted into a
(a) D flip flop and
(b) T flip flop
24. With a neat diagram explain the working of a 4 bit parallel adder.
25. Explain the working of a 4 to 1 multiplexer.

PART D (Long answer questions)
Answer any two questions; each question carries 10 marks
26. What are 1's complements and 2's complements of a binary number? Find the 1's and 2's complements of the following numbers
(a) 20
(b) 35
(c) 28
27. (a)What are Karnaugh maps? How a Karnaugh map is constructed?
(b)How a Boolean expression is implemented in a Karnaugh map?
(c)How a truth table is implemented in a Karnaugh map?
(d)How a Boolean expression simplified in a Karnaugh map?
28. What are Registers? Discuss in detail the working of Shift left and Shift right registers.
29. Discuss the construction and working of a counter type ADC.
$(10 \times 2=20)$

